SECOND QUARTERLY PROGRESS REPORT

(19 August - 18 November)

"Study and Analysis

of

Satellite Power Systems Configurations

for

Maximum Utilization of Power"

Contract Number NAS 5-9178 (NASA Goddard Space Flight Center)

W. G. Binckley, Project Manager

Approved:

H. Riess, Head

Systems Engineering Section

Approved: A. Krausz, Manager

Electric Power Department

Approved:

Guser, Director

Space Power & Support Systems

1. INTRODUCTION

This report is the second quarterly report covering work performed under the GSFC contract for study and analysis of satellite power system configurations for maximum utilization of power. The study as a whole is organized around six major tasks:

- 1. A survey of the power requirements of spaceborne equipment in typical unmanned satellites.
- 2. A survey of typical spacecraft electrical power system designs.
- 3. Collection and presentation of electrical, thermal and physical data on the individual elements of power systems (i.e., power control, energy storage, and power conditioning equipment).
- Analysis of typical space missions to be identified by GSFC with respect to their electrical power requirements and to the characteristics of photovoltaic power systems which could meet those requirements.

 Various power systems will be evaluated with respect to efficiency, reliability, weight, and interface considerations.
- 5. Investigation of possible means of standardizing electrical power requirements of satellite equipment as well as design of power systems and their components.
- 6. Investigation of the characteristics of alternate electrical power systems using radioisotope thermoelectric generators rather than photovoltaic sources.

The culmination of the first four tasks is obviously Task 5, which will include recommendations as to how standardization can be furthered without unduly compromising efficiency. It is evident that any degree of standardization which can be achieved will offer significant advantages with respect to cost, development time, and reliability; an attempt will be made to determine the point at which these advantages are outweighed by reduced efficiency, taking into consideration the various types of missions identified by GSFC.

2. PRESENT STATUS OF THE STUDY

It is estimated that by the end of the second quarter the planned program was approximately 45 percent complete. To date, all effort has been devoted to the first three tasks, with the following results:

- Task 1 Complete, except for additional data regarding experiment power requirements to be furnished by GSFC in January 1966. Results are presented in the first quarterly report and in the present document.
- Task 2 Complete. Results are presented in this report.
- Approximately 90 percent complete, with results presented in this report. The remaining data will be available in Jinuary 1966 from results of company-funded research projects now under way in the fields of power controls, power conditioning, and batteries.

It is planned that the third quarter will be devoted primarily to Task 4, system analysis for the various missions. These are to be identified by GSFC in January 1966. A schedule revised to reflect the GSFC inputs to the study is attached.

It should be noted that the results of the first three tasks are not of interest in themselves, since their only function is to serve as inputs to Task 4. These results are presented here primarily to provide an indication of the nature of the data on which the analysis of Task 4 will be based.

PROGRAM SCHEDULE

TI. EXECUTIVE SYSTEMS A. Data Accountation B. Contiguration Semany III. EXECUTIVE SYSTEMS A. Control B. Contiguration Semany III. PANAM. DATA A. Control B. Contiguration Semany III. PANAM. DATA A. Control B. Contiguration Semany III. PANAM. DATA A. Mistion Selection D. Distribution C. System Contiguration A. Paner Characteristics A. System Configuration B. Final A. System B. Final		- 18 May 65			-	MONTHS AFTER GC-ABEAD	S APT	8	ABEA		7 30	30 Jun 66	٠		
1. IOAD DATA A. Data Accomplation B. Data Accomplation B. Data Accomplation C. Load Classification D. Data Accomplation B. Configuration Summary III. PARRAW. DATA D. Distribution D. Tradeoffs D. Distribution D. D. Distribution D. Distribution D. Distribution D. D. Distribution D. D. D. D. D. D. D. D		2 3	\vdash	7	\perp	101	112		115 1	6 17	18 1	19 20	21 22	23	24
A. Data Accumilation B. Data Analysis C. Load Classification II. EXISTING SYSTEMS A. Data Accumilation B. Configuration Summary III. PARAW. DATA A. Controls B. Batteries C. Conditioning D. Distribution C. System Configuration C. System Selection B. Load Selection C. System Configuration C. System Configuration V. STANDADLATTON VI. PRYS SYSTEMS A. System Configuration VII. System Configuration VII. System Configuration S. System Configuration VII. System Configuration VII. System Configuration S. Final S. Final								H		\Box			\vdash		
B. Data Analysis C. Load Classification II. EXISTRE SYSTEMS A. Data Accumulation B. Configuration Summary III. PARAM. DATA A. Contistuation D. Distribution IV. SYSTEM TRADEOFFS A. Mission Selection B. Load Selection C. System Configuration C. System Configuration V. STANDARDIATION A. Power Characteristics B. Equipment Pesigns VI. FRY SYSTEM A. System Configuration A. System Configuration A. System Configuration WII. SHEDIS B. Equipment Pesigns A. System Configuration WII. SPECHS A. System Configuration B. Final B. Final	- 1							\dashv		_			\dashv		
II. EXISTING SYSTEMS A. Pata Accumulation B. Configuration Summary III. PARAM. DATA A. Controls A. Controls B. Distribution TV. SYSTEM TRADEOFFS A. Mission Selection B. Load Selection C. System Configuration C. System Configuration D. Tradeoffs E. Comparisons V. STANDARDIATION A. Power Characteristics B. Equipment Pasigns VI. RTC SYSTEM A. System Configuration A. System Configuration WII. RTC SYSTEM A. System Configuration WII. RTC SYSTEM A. System Configuration WII. RTC SYSTEM B. Equipment Pasigns A. System Configuration WII. RTC SYSTEM B. Final B. Final								_							
II. EXISTING SYSTEMS A. Data Accumulation B. Configuration Summary III. PARAM. DATA A. Controls B. Eatterles C. Constitution D. Distribution B. Load Selection B. Load Selection D. Tradeoff E. Comparisons V. STANDARDIATION A. POWER Characteristics B. Equipment Designs VI. RTG SYSTEMS VI. RTG SYSTEMS VII. RRFORTS VII. RRFORTS A. System Configuration VII. RRFORTS A. Guarterly Program B. Final	ľ							-					\dashv		
11. EXISTING SYSTEMS A. Data Accumulation B. Configuration Symmary III. PARAM. DATA A. Controls D. Distribution D. Distribution C. System Configuration C. System Configuration D. Tradeoffe E. Comparisons V. STANDARDIATION VI. WEFORTS A. System Configuration VII. WEFORTS B. Final					-			-					-		
A. Pata Accumulation B. Configuration Summery III. PARAM. DATA A. Controls B. Batteries C. Conditioning D. Distribution IV. SYSTEM TRADBOFFS A. Mission Selection B. Load Selection C. System Configuration V. STANDADIAMION V. STANDADIAMION V. STANDADIAMION V. STANDADIAMION VI. RYS SYSTEMS A. System Configuration WI. RYS SYSTEMS B. Equipment Designs A. System Configuration VII. REPORTS A. System Configuration B. Final					_								_		
B. Configuration Summary A. Controls B. Batteries C. Conditioning D. Distribution SYSTEM TRADEOFFS A. Mission Selection B. Load Selection C. System Configuration D. Tradeoffs E. Comparisons STANDARDIZATION A. Power Characteristics B. Equipment Designs FITS SYSTEMS FITS SYSTEMS A. System Configuration A. Power Characteristics A. System Configuration A. System Configuration B. Equipment Pesigns A. System Configuration B. Final B. Final					\dashv			-					-		1
III. PARAM. DATA A. Controls B. Batterles C. Conditioning D. Distribution TV. SYSTEM TRADEOFFS A. Mission Selection B. Load Selection C. System Configuration D. Tradeoffs E. Comparisons V. STANDARDIZATION A. Power Characteristics B. Equipment Designs VI. RTO SYSTEMS A. System Configuration VII. SGFPORTS A. System Configuration b. Finel B. Finel								-							
III. PARAM. DATA A. Controls B. Batteries C. Conditioning D. Distribution IV. SYSTEM TRADEOFFS A. Mission Selection B. Load Selection C. System Configuration D. Tradeoffs E. Comparisons V. STANDARDIZATION A. Power Characteristics B. Buipment Designs VI. RTD SYSTEMS VII. REFORTS A. System Configuration VII. REFORTS A. System Configuration A. System Configuration b. Final B. Pinal				-				-							
A. Controls B. Batteries C. Conditioning D. Distribution IV. SYSTEM TRADBOFFS A. Mission Selection B. Load Selection C. System Configuration D. Tradeoffs E. Comparisons V. STANDARDLATION A. Power Characteristics B. Rquipment Designs VI. RTG SYSTEMS VI. RTG SYSTEMS A. System Configuration B. Pinal A. Guarterly Program B. Pinal					_	\dashv		4	\dashv	_			-	-	
B. Batteries C. Conditioning D. Distribution IV. SYSTEM TRADBOFFS A. Mission Selection B. Load Selection C. System Configuration D. Tradeoffs E. Comparisons V. STANDARDIATION VI. RTC SYSTEMS VI. RTC SYSTEMS VI. RTC SYSTEMS VI. RTC SYSTEMS VII. REPORTS A. System Configuration A. System Configuration A. System Configuration B. Final B. Final	A. Controls									_		_	\dashv		
C. Conditioning D. Distribution IV. SYSTEM TRADEOFFS A. Mission Selection B. Load Selection C. System Configuration C. System Configuration V. STANDADIATION V. STANDADIATION VI. RTC SYSTEMS A. System Configuration VII. REPORTS A. System Configuration VII. REPORTS A. System Configuration B. Final B. Final															
D. Distribution TV. SYSTEM TRADEOFFS A. Mission Selection B. Load Selection C. System Configuration D. Tradeoffs E. Comparisons V. STANDARDIATION A. Power Characteristics B. Equipment Designs VI. RTS SYSTEMS A. System Configuration VII. SEPORTS WILL SEPORTS B. Final															
IV. SYSTEM TRADEOFFS A. Mission Selection B. Load Selection C. System Configuration D. Tradeoffs E. Comparisons V. STANDARDIZATION V. STANDARDIZATION A. Power Characteristics B. Equipment Designs VI. RTD SYSTEMS A. System Configuration VII. REPORTS A. Guarterly Program B. Final					_										
IV. SYSTEM TRADEOFFS													_		
A. Mission Selection B. Load Selection C. System Configuration D. Tradeoffs E. Comparisons V. STANDARDIZATION A. Power Characteristics B. Equipment Designs VI. RTG SYSTEMS VI. RTG SYSTEMS VII. RREPORTS A. System Configuration VII. RREPORTS B. Final B. Final															
B. V. STAI V. STAI VI. REF VII. REF A. A. A. B.	. !														
C. D. E. E. A. A. VI. RTG A. A. A. A. A. B.	,														
D. 8TAI A. A. VI. REP. VII. REP. A.	l														
V. STAN V. STAN A. VI. RIG A. A. A. B.										_					
A. B.	В.														
A. A. A. A. B. B. B. A. B.														\square	
A A B B B B B B B B B B B B B B B B B B										-		\dashv		-	
B. A. A. B.			_		_		_	-		-		_	-		
A A A B B B B B B B B B B B B B B B B B				_	-						_	_ ‡	4		
A. A. REPG A. B. B.			_	_	\dashv		-	-+	_		-+	_	- +	🛊	
A. A. B.					-					.			4	- 🕴	
A A. B.			 			_		-	_	-				-	
А. В. В.	ļ									- !	_	-		- 4	
A. Quarterly Program b. Final	REPORTS		-		-			-		-		_			
	A. quarterly Program								_	-					\Box
				-					1	-		-		-	
					-		1		1	-		-		\dashv	
				_	-	+	_	+		\dashv	_	-		+	_
			_	_	i	_		-	1	-	\exists	\dashv	1	\dashv	\perp
								-						-	

3. STUDY RESULTS

3.1 ANALYSIS OF LOADS

As indicated in the first quarterly progress report, the loads supplied by satellite power systems will be considered under three major headings:

- o Communications and data handling equipment
- o Stabilization and control equipment
- o Experiments

The data accumulated for the first category was presented in the previous report. The second and third will be covered here, except for the additional experiment data to be obtained in January 1966.

3.1.1 Stabilization and Control Equipment

Tables I, II, and III summarize the results of the survey of electrical power requirements of typical stabilization and control equipment. Stabilization and control systems typically consist of sensors and reaction devices, connected through a set of electronics which provides the required data processing and logic functions. Table I shows voltage, voltage regulation, frequency and frequency regulation, ripple, duty cycle, and average power for samples of the three types of sensor commonly used (inertial, optical, electromechanical transducers). Table II provides the same data for the standard types of reaction devices, and Table III shows the requirements for typical digital and analog signal processing and logic units.

A review of these tables indicates the great variety of power requirements imposed by stabilization and control equipment, not only with regard to voltage and voltage regulation, but for ripple and noise as well. Consultations were held with responsible design engineers to determine the reasons for this wide variety. It was found that in most cases, a component or part was chosen because it was available and met the functional requirements of the system, and was therefore accepted along with its particular power requirements, without any consideration of whether these requirements could be simplified by selection of another part or component which might also meet the

TABLE I

STABILIZATION AND CONTROL SENSORS

Sensor Type	Attitude Control System - Type	Required Voltage and Regulation	Required Freq.	Ripple p - p	Duty Cycle	Average Power	Usage
I. Inertial Rate Gyro	Active 3 Axis Control	26/18 VAC +20VDC + 24 -20VDC + 24 +28 +5.5 VDC	400 + 0.1% 20	300 MV 300 MV 300 MV	100% until stæbilized in orbit	6.0 W 0.46 W 0.17 W 0.30 W	000
Rate Gyro	Spin Stabilized with active orientation	+22 +2 VDC	ı	200 MV	100% until normal orbit attained	4 W plus 8 W heaters	VELA
Position Gyro	Active 3 Axis Control	+28 +5.5 VDC	1	300 MV	100%	4.84 W 12.0 W heaters	050
Accelerometer	Spin Stab. Probe	+45 vbc +20 -20 <u>+</u> 10%			Command	9 MW 160 MW 160 MW	ABLE V
II. Optical Earth Detector	Active 3 Axis Control	+20VDC + 1.5% -20VDC + 1.5%			100% 100%	4.35 W 4.35 W	050
Earth Detector	Active Spin Stab.	+22 +2 VDC	ı	200 MV	100%	3.0 W	VELA
Earth Detector	Active Spin Stab.	+26.5+4.5 VDC	i	200 MV	100%	0.75 %	COMBAT
Sun Detector	Active Spin Stab.	+15 VDC + 1.5%	1	45 /	100%	Negligible	PIONEER
Sun Detector	Active 3 Axis Stab.	NONE	ı	1	ſ	ı	999
Sun Detector	Active Spin Stab.	NONE	ı	1	i		COMSAT
III. Trunsducers Resolver	Shaft Fosivion	115 VAC +1.5%		·	100%	150 NE	200
Pressure Transducer	Pneumatic Press	+5 VDC +1%	•	50 MV	100%	10 MW	090

TABLE II

STABILIZATION AND CONTROL REACTION DEVICES

	Usage	000		050	VELA	090	COMSAT	VELA PIONEER	VELA	050
	Average Power	22.7 W	8.1 W	6.5 W 3.6 W	3•0 ₩	3.4 W	0.7 MW 4.2 W (on)	12.5 W (on)	33.0 W 132.0 W	20 MH 170 MH 213 MM
	Duty	518	88 10 10 10 10 10 10 10 10 10 10 10 10 10	74 88 27 88 27 88	100%	100%	0.02% Command	Command 0.06%	Command Command	80 80 E
	Ripple p - p		t al '		200 MV	200 MV	200 MV 400 MV		200 MV	
REACTION DEVICES	Required Freq.	400 cps + 5%	cps +	400 cps + 5% 400 cps + 5% 400 cps + 5% 400 cps + 5%	•	,		. ,	1 1	400 cps + 5% 400 cps + 5% 400 cps + 5%
T.T.OHEN	Required Voltage and Regulation	125 + 10VAC 135 + 10VAC	+1+1 -	125 + 10VAC 135 + 10VAC 125 + 10 VAC 135 + 10 VAC	+22 ⁺² VDC	26 +5 VDC	7 +1 +	22 +2 vpc 16 + 0.5 vpc	22 +2 vDc -3 vDc -3 vDc -3 vDc	125/135 <u>+</u> 10VAC 125/135 <u>+</u> 10VAC 125/135 <u>+</u> 10VAC
	Operating Mode	Stall or Acceleration	Full Speed Stall or Acceleration	Full Speed	All Modes	Acquisition Mode Orbit Mode	Acquisition Mode Orbit Mode	All Modes Spin-up	Despin ∆V	De-energized Accelerating Full Speed
	Device Type	I. Reaction Wheel Yaw Motor	Pitch or Roll		Yaw or Roll	II. Solenoids Yaw, Pitch or Roll	Radial or Axial	Yaw, Pitch, or Roll Roll	III. Thrusters Heaters	IV. Motors Solar Array or OPEP Drive Motors

TABLE III STABILIZATION AND CONTROL ELECTRONICS

Tipput to ADGGs			and Remiletton		Ripple	Duty	,	
Tipput to ADCS	I. Digital		Horasingar	and Regulation	d - d		Power	Usage
Control ACS		to ADCS *	+26.5 + 4.5 VDC					
Control AGS	1		+10 VDC + 3%	, ,		1000	1.00 MM	COMBAT
## Control ACS		ol ACS	+0 ADC + 3%		200 3	1000	200 Mg	
## Control AGS			+12 VDC + 36		200 MV	Apol		
December Control ACB +22 + 70c Control ACB +23 + 70c Control ACB +23 + 70c Control ACB +24 + 70c Contr			+6 VDC + 34			100	150	COMBAT
## Control AGS			-6 VDC +1			100%	350 M	
## De-Emergized		1 ACB	45			100%	350 NW	
De-Energized			755 -3 VDC	•	200 MV	100%	74 N	VETA
Binetized		rgized	5.54 90,					
Bentzon Soamer	G	,	5.4	•	400 MV	99.084	ישו נו	į
Biorizon Soamer	Energ11	red	+28 +5.5 VDC		007			990
Solar Array or 115 Vac 11.57	Hor1zon	Scanner	12 C 1 JULY 05+		400 W	0.02%	0.7 MW	
Solar Array or 115 VAC + 24	Demodul	ator	+10 VDC + 1.5%		300 MV	100%	MN OH	S
Solar Array or 115 Vac + 24 2461 cps + 0.14 100% 100% 100 M 10			+28 +5.5 VDC	, ,	₩ 000	100%	MW OT	3
Process Privale Privale Process Proc	Solar A	TO VETT		•	6 00 MV	100%	MW 04	
Process Horizon	OPEP Dr.	1ve	115 VAC + 2% +20 VDC + 1, 54	2461 cps + 0.1%		100%	050	
## Process Horizon			+10 VDC + 3%		300 MV	1000	100 M	090
Process Horizon			28 7.7 VDC	•	000	K OOT	M 09	
Process Horizon			28 VAC + 3%	-	300 MV	10%	1.4 W	
Process Horizon +20 VDC + 1.5% - 20 VDC + 20 VDC + 1.5% - 20 VDC + 20 V			;	+ J		10%	750 MM	
Process Gyro Signals		Horizon ignæle	+20 VDC + 1.5% -20 VDC + 1.5%		300 MV	100%	₩ 3£. ₩	98
Provide Reference	Process (Gyro Signals	+28 +5.5 VDC			2 001	4.35 W	
Signals Signals Signals Signals Signals Signals Signals Signal Conditioning Signal S	į		· · ·	•	₩ 004	100%	3.54 W	000
v Signal +10 ± 0.2% VDC	Signals	deference	+28 +5 VDC	,	400 MV	#o+ 1, pl.;;		
y Signal	Signal Co	onditioning	+10 + 0 24			Cold 16.84W	15	OGO
y Signal -20 VDC + 1.5% - 50 MV 100% 20 MV 100% + 1.5% + 1.5% - 50 MV 100% 50 MV 100% 50 MV 100% 50 MV 100% 30 MV 100% 30 MV 100% 340 MV 105/135 + 10VAC			OUV 45.0 I VI	•	50 MV	5%	300	
Acceleration 125/135 ± 10VAC 125/135 ± 10VAC 400 cps ± 5% 400 MV 100% 50 MV 50 MV 50 MV 50 MV 100% 50 MV 50 MV 50 MV 100% 1	Telemetry	Signal	+1	•	50 MV	, ,		N STEA
Acceleration 125/135 + 10VAC 400 cps + 5% - 50 MV 100% 30 MM 100% 30 MM 100% 340 MM 100% 340 MM 100% 340 MM 100% 340 MM 100% 125/135 + 10VAC 400 cps + 5% - 51% 16.6 M 105/135 + 10VAC 400 cps + 5% - 40% 4.9 M 100% 115 VAC + 2% 2461 cps + 0.1% - 50% 23 MM 100% 2461 cps + 0.1% - 50% 23 MM 100% 2461 cps + 0.1% - 50% 23 MM 100% 2461 cps + 0.1% - 50% 23 MM 100% 2461 cps + 0.1% - 50% 23 MM 100% 2461 cps + 0.1% - 50% 23 MM 100% 2461 cps + 0.1% - 50% 23 MM 100% 2461 cps + 0.1% - 50% 23 MM 100% 2461 cps + 0.1% - 50% 23 MM 100% 2461 cps + 0.1% - 50% 2461 cps + 0.1% 2461 cps			+1+	•	20 W	100%	20 MM	000
Acceleration 125/135 + 10VAC 400 cps + 5% - 51% 16.6 W 100% 340 MM 24	Bias		1 +	•	50 MV	100%	30,00	
ad 125/135 + 10VAC 400 cps + 5% - 51% 16.6 W Acceleration 125/135 + 10VAC 400 cps + 5% - 6.6 W d 125/135 + 10VAC 400 cps + 5% - 40% 4.9 W zed 115 VAC + 2% 2461 cps + 0.1% - 57% 3.3 W 115 VAC + 2% 2461 cps + 0.1% - 50% 23 WM	Stall or 1	Acceleration	125/135 + 1000		/M 00↑	100%	340 MW	950
Acceleration 125/135 ± 10VAC	Full Speed	T	125/135 + 10VAC	+1+		51%	16.6 W	8 8
d 125/135 ± 10vAC 400 cps ± 5% - 40% 4.9 W zed 115 vAC + 2% 2461 cps + 0.1% - 50% 23 W	Stall or	Acceleration		1 -	•		М 9•9	3
zed 115 VAC + 2% 2461 cps + 0.1% - 57% 3.3 W	rull Speed			+1 -			M 6.4	000
115 VAC + 2% 2461 cps + 0.1% 50% 23 MM	De-Energiza	eđ		+1			3•3 W	•
	Dezigier			+1+ cps +1			23 WE	Ç.

functional requirements. In short, the lack of standardization results in part from a lack of attention to the matter; it was the consensus of opinion that if the equipment were to be redesigned or modified, it would be possible to standardize on a smaller range of electrical power requirements.

3.1.2 Scientific Experiments

Table IV lists the 58 experiments which were reviewed for the present study to date. They are classified in the table in nine basic functional categories which appear to cover the range of nearly all present or anticipated satellite experiments. It can be seen that in many cases two experiments may differ only in the range of the parameters they measure.

It appears that the general practice with respect to power for scientific experiments has been to provide the experiment with the nominal spacecraft bus voltage, leaving any required conversion, inversion, or additional regulation to be performed within the experiment. This practice simplifies the definition of interfaces and undoubtedly expedites the overall program, but at the cost of considerable waste of power. It is not unreasonable to estimate that half the power supplied to the experiments has been wasted in power conditioning equipment within the experiment package.

Table V summarizes the electrical power requirements for each of the experiment packages listed. It is hoped that additional data for this table will be available during the next quarter, but from the data shown here it is clear that the variety of requirements is greater than for the stabilization and control equipment. Not only is there a wide range, but in some cases, the requirements differ so slightly (for example, different experiments require 5, 6, 7, 8, 9, and 10 volts respectively) that it seems very probable that some standardization would be possible.

From this cursory review it is evident that the standardization of power requirements for scientific experiments should be investigated in considerable detail. It is planned that part of the work during the third quarter of the study will be to define feasible and reasonable standard voltages and power characteristics for scientific experiments.

TABLE IV

CLASSIFICATION OF EXPERIMENTS

I.	Rad	io Frequency	
	1)	#5001 Radio Astronomy - 2.5 mc cosmic noise	OGO-C
	2)	#5002 VLF Propagation - 0.2 -100 kc	OGO-C
	3)	Range and Range Rate 2270 mc	OGO-C
	4)	#PC-1.05 Radio Propagation - Stanford	Pioneer
	5)	#4917 - VLF Noise and Propagation 0.2 to 100 kc	OGO-A
	6)	#4918 - Radio Astronomy 2-4 mc	OGO-A
II.	Aud	io Frequency	
	1)	#5003 Whistlers and Audio Frequency Electromagnetic Waves 500 cps - 18 kc	OGO-C
III.	Mag	netic Fields	
	1)	#5005 Low Frequency Magnetic Field Fluctuations	OGO-C
	2)	#5006 Rubidium Vapor Magnetometer - Magnetic Field Survey	OGO-C
	3)	#PC-1.02 Magnetometer - GSFC	Pioneer
	4)	Flux Gate Magnetometer	Able V
	5)	Spin Coil Magnetometer	Able V
	6)	#4910 Low Frequency Magnetic Field Variations 0.01 cps to 3 kc	OGO-A
	7)	#4911 Magnetic Field Strength and Direction 3 % to 0.14 gauss	OGO-A
IV.	Pla	sma Measurements	
	1)	#PC-1.03 Plasma Probe - MIT	Pioneer
	2)	#PC-1.08 Plasma Probe - ARC	Pioneer
	3)	Plasma Probe	Able V
	4)	#4902 Plasma (Electronstatic Analyzer) 100 ev to 200 Kev	OGO-A
	5)	#4903 Plasma (Faraday Cup) 100 ev to 10 Kev	OGO-A

T/BIE IV (CONTINUE)

CLASSIFICATION OF EXPERIMENTS (Cont.)

٧.	Ligh	t Frequencies	
	1)	#5012 Airglow and Aurora Photometer	OGO-C
	2)	#5013 Lyman Alpha and U.V. Airglow 1216-1550A	OGO-C
	3)	#5014 Ultraviolet Spectra of the Earth's Atmosphere 1100 to 3300	OGO-C
	4)	#5019 Ionosphere Composition and Solar U.V. Flux	OGO-C
	5)	#5020 Solar U.V. Emissions 170-1700 &	0G0-C
	6)	#4919 Geocoronal Lyman-Alpha Scattering (1216A)	OGO-A
	7)	#4920 Gegenschein Photometry	OGO-A
/I.	Part	cicle Radiation	
	1)	#5008 Low Energy Proton - Alpha Telescope Protons 0.5 - 40 mev - Alpha 2-160 mev	OGO-C
	2)	#5009 Galactic and Solar Cosmic Rays 40 mev - 1 bev	OGO-C
	3)	#5010 Corpuscular Radiation - Electrons 40 kev and > 120 kev	OGO-C
	4)	#5011 Low Energy Trapped Radiation and Auroral Particles 10 - 100 kev electrons, 100 kev to 10 mev protons, 10 kev to 10 mev total flux	ogo-c
	5)	#5007 Cosmic Ray and Polar Region Ionization	OGO-C
	6)	#5017 Neutral Particle Measurements (density, temp)	OGO-C
	7)	#5021 Solar X-Fay Emissions 0.5-%, 2-8%, 8-16%, 44-60%	OGO-C
	8)	#PC-1.04 Cosmic Ray - Univ. Chicago	Pionee
	9)	#PC-1.06 Cosmic Ray - CRCSW	Pionee
	10)	Solid State Detector - Proton Flux 0.5 - 10 mev	Able V
	11)	Low Energy Scintillometer - Electron and Proton	Able V
	12)	Ion Chamber and Geiger Counter	Able V
	13)	Cosmic Ray Telescope	Able V
	14)	Scintillation Spectrometer - Protons	Able V

TABLE IV (CONTINUAL)

CLASSIFICATION OF EXPERIMENTS (Cont.)

	15)	#4901 Solar Protons 2-100 mev	0G0-A
	16)	#4904 - Positron Search and Gamma Rays	OGO-A
	17)	#4905 - Trapped Radiation (Scintillation Counter) Electrons and Protons	A-000
	18)	#4906 - Isotopic Abundance and Galactic Cosmic Rays	OGO-A
	19)	#4907 - Cosmic Ray Spectra and Fluxes 0.3 mev - 4 bev	OGO-A
	20)	#4908 - Trapped Radiation (Geiger Counter)(electrons 40 kev - 2 bev)(protons 0.5 mev - 23 mev)	OGO-A
	21)	#4909 - Trapped Radiation (Electron Spectrometer) 50 kev to 4 mev	OGO-A
	22)	#4912 Thermal Charged Particles - electrons and ions 0.2 ev to μ kev	OGO-A
	23)	#4913 - Thermal Charged Particles - + ions low energy	OGO-A
	24)	#4914 - Electron Density by RF Propagation - electron density	OGO-A
VII.	Mass	<u>3</u>	
	1)	#5015 Neutral and Ion Mass Spectrometer 1 - 50 AMU	OGO-C
	2)	#5016 Positive Ion Composition 1 - 45 AMU	OGO-C
	3)	#4915 - Atmospheric Composition 1 - 45 AMU Positive Ions	OGO-A
VIII.	Mete	eorites	
	1)	#5018 Micrometeorites - spatial density and mass distribution 10 ⁻¹³ to 10 ⁻¹⁹ grams	OGO
	2)	#PC-1.07 Micrometeoroid Detector - ARC	Pioneer
	3)	Micrometeorites	Able V
	4)	#1916 - Micron Dust Particles (mass, velocity, direction, intensity, time and spatial variations)	OGO-A
IX.	Biol	Logical or Mineral Detectors	
	1)	Microbiological Detector	Surveyor

TABLE V EXPERIMENTS

Experiment Identification	Required Voltage and Regulation	Required Freq.	Ripple p - p	Duty	Average	Usage
I. Stanford Radio Propagation	-3 VDC +2.5 VDC +5 VDC +12 VDC			C- C- C- C	1.4 W	PIONEER
II. 5003 Whistlers and Audio Frequency Electromagnetic Waves - 500 cps - 18 cps			ı	•		
III. Magnetometer (UCLA)	+6 VDC + 0.1% +8 VDC + 1% -8 VDC + 1% +20 VDC + 0.1% -20 VDC + 1% +3 VDC + 1%		0.15 80 W 80 0.15 80 W	Command Command Command Command Command	168 MM 960 MM 120 MM 800 MM	ОДО
Spin Coil Magnetometer	+10 VDC + 1% -16 VDC + 1% + 6 VDC + 5%		1% 1% 1 MV max	100% 100% 100%	300 MW 100 MW 120 MW	ABLE V
Flux Gate Magnetometer	+6 VDC + 156 -6 VDC + 156 +18 VDC + 256 +18 VDC + 256		1% 1% (Special) (Battery)	100% 100% 0-5 sec 0-5 sec	180 MW 12 MW 3.24 W 72 W	ABLE V
IV. MIT Flasma Probe	46 VDC 112 VDC 110 VDC -25 VDC -30 VDC 175 VDC	rryir	c. c. c. c. c. c.		Lo Avg 0.9 W H1 Avg 2.1 W Peak (7.9 W	PIONEER
ARC Plasma Probe	-3 VDC + 6 VDC +12 VDC -18 VDC + 150 VDC +165 VDC		c= c= c= c= c= c=	60 C0 C0 C0 C0 C0	1.5 W	PIONEER
	+ 10 VDC + 0.1% +3VDC + 0.1% +3000 VDC*	111	0.0 1.8 1.8	100% 100% 30 W max	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	AOSO
VI. Proton Spectrometer (UCLA)	+1250 VDC + 0.1% -20 VDC + 1% +3 VDC + 1% +7 VDC + 1% -7 VDC + 1% -6 VDC + 1% -6 VDC + 0.1% +5.1 VDC + 0.1% -3 VDC + 1%		00.1% 20 MV 20 MV 20 MV 20.1% 20 MV	Command Command Command Command Command Command Command Command Command	250 MM 90 MM 177 MM 1.3 W 262 MM 150 MM 122 MM 118 MM	090

TABLE V (CONTINUED)

EXPERIMENTS

Asperiment identification	Beauthed Walter						
	and Regulation	Required Freq.	Ripple	Duty	Average	Usage	
VI. (Cont.)	ering distribution and and an extension of the state of t		4 - 4	cycle	Fower		
ייים לייים ליים לייים ליים לייים לייים לייים לייים לייים לייים לייים לייים לייים ליי							
AND THE DESCRIPTION OF THE PARTY OF THE PART	+1200 VDC + 0.1%	•	0.1%			Drown	
	+3.1 VDC + 1% +12 VDC + 14	•	14°		1.5 W	LIONEER	
Cosmic Ray Telescope	46 VDC + 14	•	\$		_		
Ton Chamber and has real not	2 - 1	•	1%	100%	240 MM	ABLE V	
January de Rei Countre	40 VDC + 1%	•	1%	100%	WW 06	ADT II	
Solid State Detector	+6 VDC + 196		¥.	1001	# 1 S	ABLE V	
	+6 VDC + 1%		\$ 75	1007	1.6 MW	ABLE V	
Scintillation Spectrometer	+1200 VDC + 0.1%		, O)))			
	+16 VDC + 1%	•	R 1 160	100 F	100 MM	ABLE V	
	-16 VDC + 1%	•	S.A.	F001	MW C+Z		
	+10 VDC + 1%		2 78	100	8 °		
	+0 VDC + 13		1%	100%	15 MW		
	-6 VDC + 1%		18	100%	23.5		
	10 + 3 VDC			rone 1/2	2.5.5		
	+ 1	•		Sec pulse	, a		
	+10 + 0.5 VDC		200 MV mex		. ~		
	+5 + 0.5 VDC	•	200 MV me.x	~ ×	. ~		
	to + O.5 VDC		200 MV max	~ ×	~		
LOW Energy Scintillometer	+1200 VDC + 0.1%	•	, de	1000			
	+16 VDC + 1%	•	8. T. D.	1001	100 MM	ABLE V	
	+6 VDC + 19	•	2 % 1 T	1001 84001	208 MW		
Cosmic Ray and Gamma Ray	+10 VDC + 0.14			2001	TOC WM		
	+1200 VDC + 0, 19		0.1%	100%	650 MM	J-080	
X-Ray Instrument	י אור טיי טעני טוד		Q .	400T	20 EM		
	+1200 VDC + 0.1%		0.0	100%	450 MW	J-090	
Primary Electron Detector	1 - JUA 01+		2	2001	2		
	2000 - SEA SEA		0.5%	100%		OGO-E	
	+1350 VIDC + 0.8	•		100%	h 1		
111	87.0 H 27.001.	ť	0.1%	100%			
• • • • • • • • • • • • • • • • • • • •							
• Micrometeorite	+6 VDC + 1%	•	1%	100%	72 MG	: :	
<pre>IX. Microbiological Detector</pre>	+ 10 VDC + 0 25d		+ 7	o/ ^ -	MIN 5	ABLE: V	
	+10 VDC + 1%	1 (2 7	100%	200 NW	VOYAGER	
	•	1	Q V	sec	ig.		

3.2 POWER SYSTEM CHARACTERISTICS

A spacecraft electrical power system can be simply defined in terms of the characteristics of the power available on its main power bus. These are basically the following:

- o Voltage
- o Voltage regulation
- o Average or peak power
- o Ripple and noise

Table VI lists these characteristics for eight different satellites. The range of values shown here will probably cover the requirements for most future unmanned spacecraft. For this reason, a detailed examination of these eight systems offers a promising avenue to explore the possibilities of standardization.

3.3 ANALYSIS OF EXISTING POWER SYSTEMS

Figures 1 through 8 are overall block diagrams showing the electrical power system configuration used in each of the eight satellites listed in Table VI. In each case the system makes use of solar cell arrays combined with batteries, so that in general the same functions must be performed and therefore the same basic elements are found. The differences result to a large extent from the varying emphasis on one or another requirements, such as the very long lifetime required for Comsat, the intermittent heavy load in Relay, the stress on off-the-shelf designs for Vela, the heavy loads and complex equipment on EOGO and POGO, and so on.

Another major influence on electrical power system design is the planned orbit for the spacecraft. Table VII indicates the characteristics of the orbits for the eight satellites discussed here. Orbit characteristics affect power system design by dictating such important parameters as length and frequency of eclipses, integrated radiation flux, and range of angles of incidence of solar radiation. These parameters are reflected in battery cycling requirements and in power control requirements.

TABLE VI LOAD BUS POWER

Unreg	Inregulated	Locd Bus	Be	Batteries			Load Bus			Maximum Solar.
Nolts	88	Power Watts	Number Cells	Amp Hours	Type	Impedance	Ripple Tr	Transients	Usage	Array Power
88-	-25 +10	55	21 x 2	0.4	N1-Cd	,	e .	4	TIROS	90 Watts
8	+25 -10	20	22 × 2	0.4	N1-Cd		20 MV p-p 34 VDC Peak for 0.5 sec.	34 VDC Peak for 0.5 sec.	RELAY	90 Watts
8	- 18 - 18	300	% × 8	12.0	M1-Cd	< 0.5 \tau	0.3 V p-p f	0.3 V p*p 6 50 VDC Peak for < 10 msec.	000	600 Watts
88	15	200	22 × 2	12.0	Ag-Cd	0.5 to 3 0	0.5 to 30 0.3 V p-p \$50 VDC Peak for < 10 msec	\$50 VDC Peak for < 10 msec.	P0G0	600 Watts
88	+18 -16	85	18	1.0	Ag-Zn	< 13Ω	150MV p-p ±2.25 V Peak	.25 V Peak	PIONEER	81 Watts
ผ	+10 -15	75	16 × 2	0.9	N4-C4	<1.02	200 MV p-p + 2.20 V Peak		VELA	100 Watts
18	\$ \$	35	14 x 2	0.4	N1-Cd (F type)	ខ4.0>	0.5 V p-p	ACO THE DOOR	ABLE V	40 Watts
8	+15 -15	105	&	6.0	N1-ca	<1.00	5MV 0-10KG f	<pre>< 5MV 0=10KG for < 10 msec. COMSAT</pre>	COMSAT	161 Watts

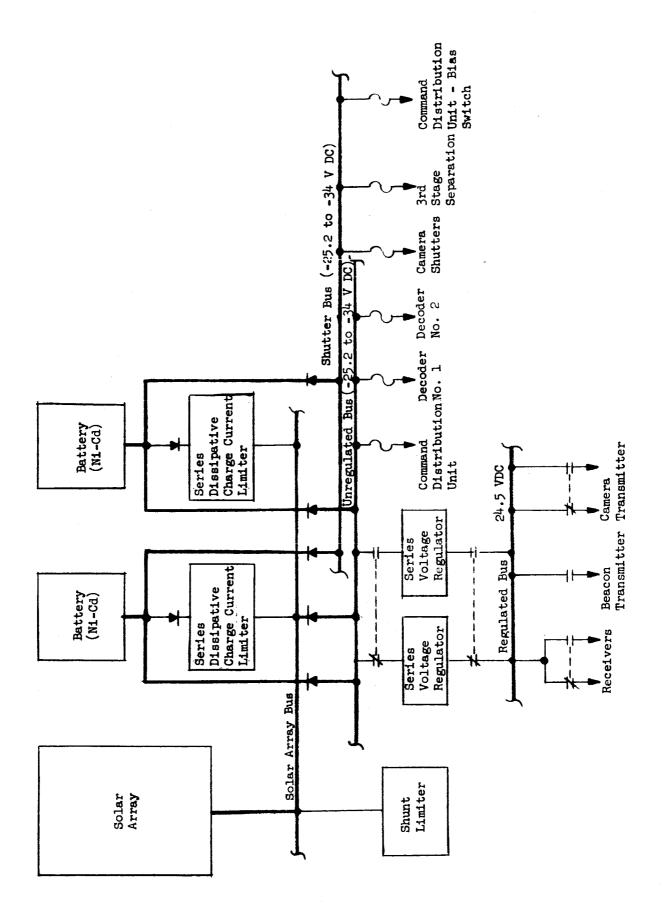


Figure 1 Tiros, Electric Power Subsystem

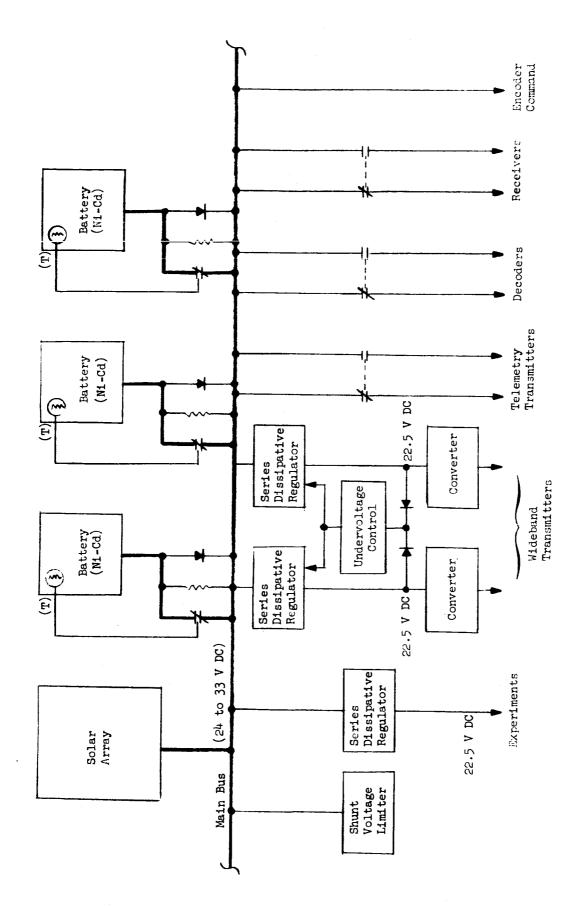


Figure 2 Relay, Electric Power Subsystem

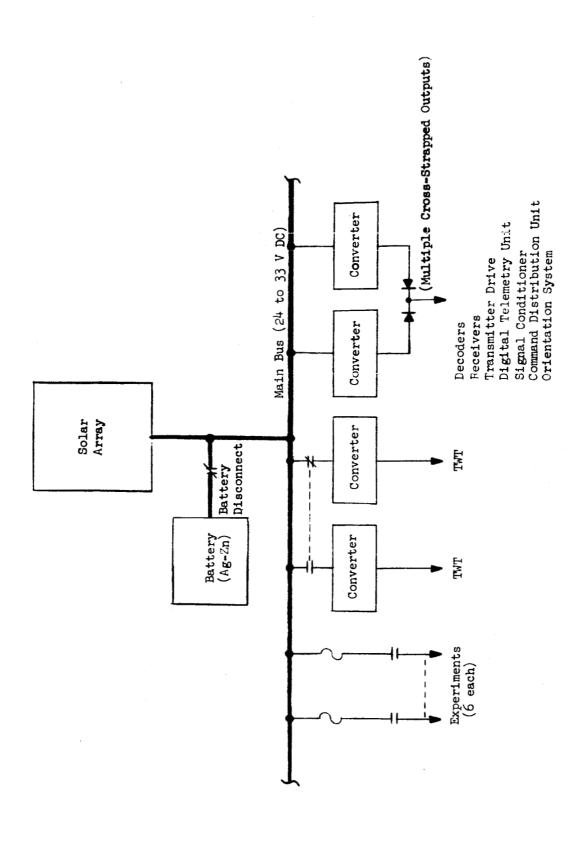


Figure 3
Pioneer, Electric Power Subsystem

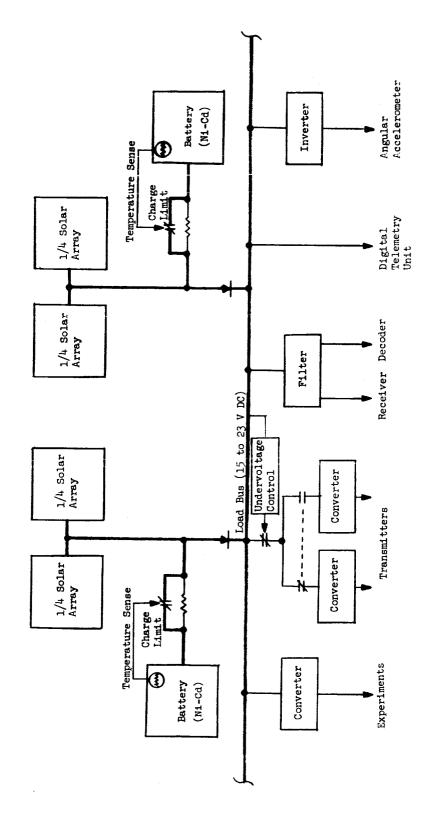


Figure 4 ABLE V, Electric Power Subsystem

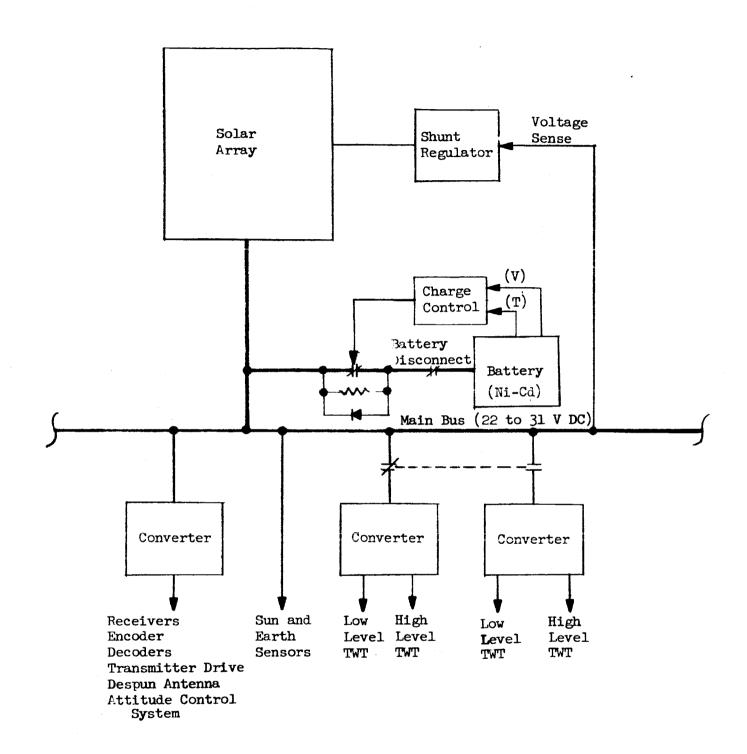


Figure 5
COMSAT, Electric Power Subsystem

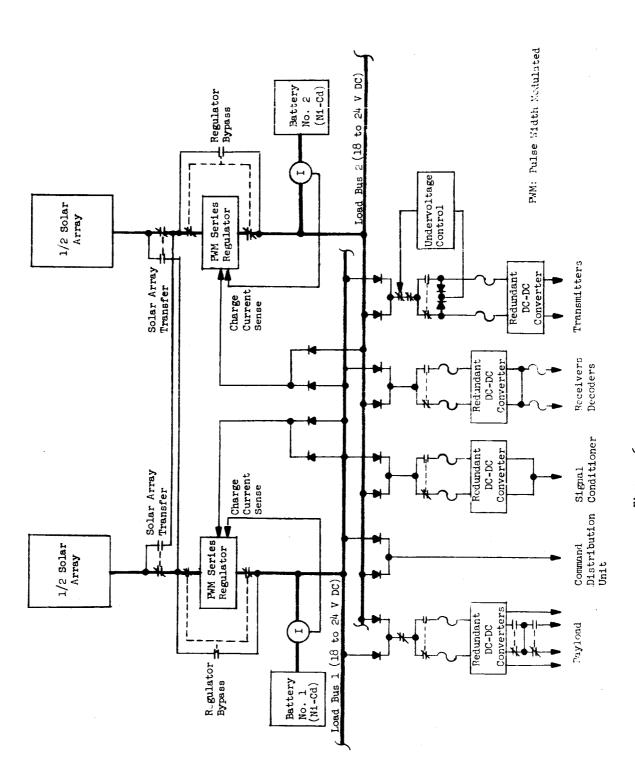
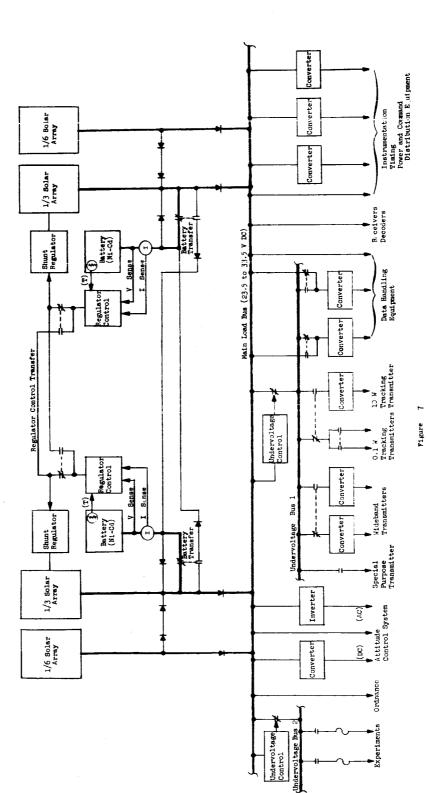



Figure 6 VEIA, Sleetric Power Subsystem

OGO Electric Power Subsystem

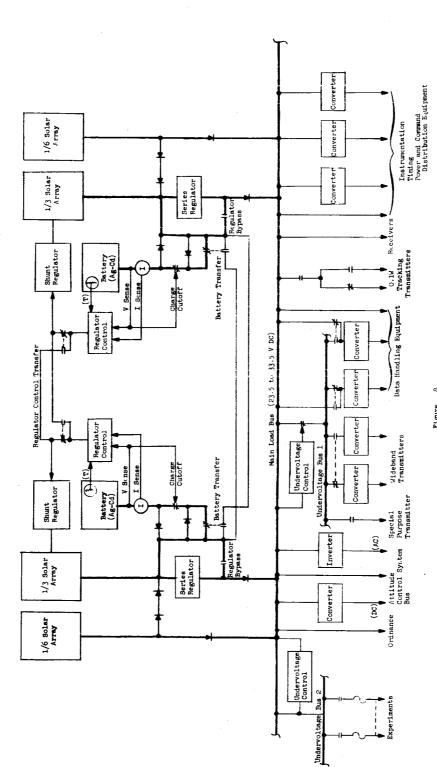


Figure 8 POGO, Electric Power Subsystem

TABLE VII
ORBITAL CHARACTERISTICS

Program	Orbit Time	Predicted Life Time	Type - Inclination
COMSAT	24 hr.	5 yr.	Equatorial - Synchronous
OGO	38 39 min.	l yr.	31° inclined
POGO	104 min.	ı yr.	Polar - 87°
PIONEER	Probe	6 mo.	Solar
RELAY	185.1 min.	l yr.	48° inclined
VELA	110 hr.	3 yr.	31° inclined
TIROS	113.5 min.	6 mo.	Polar - 101°

3.3.1 Power Source Control

Power source control is the term applied to the function of regulating the voltage and/or current delivered by the solar array. In all cases, the voltage delivered by the array must be kept below a value which might damage spacecraft equipment; under certain conditions (emergence from eclipse, for example), the array may generate an excessive voltage for a short period of time. In addition, battery charging must be controlled to prevent overcharging of the batteries. In some cases, it is also desired to maintain bus voltage at a minimum value even when the array voltage has fallen below this value.

The types of regulation used to perform these functions are in general the following:

- o Series dissipative
- o Shunt Dissipative
- o Pulse width modulated (bucking, boost, or buck-boost).

 Table VIII summarizes the methods of power source control used in the eight satellite power systems considered here.

Series Dissipative Regulation. This type of regulation requires that the input voltage be higher than the regulated output voltage. Maximum dissipation occurs at maximum load and maximum voltage difference, as shown in Figure 9. It can be seen from the figure that with an array temperature variation of 145°C, the dissipation is over 100 percent of the load, reducing efficiency below 50 percent. Nevertheless, this relatively simple type of regulation may be attractive in cases where input voltage variation, and the consequent loss in efficiency, are small. Weight of the regulator varies as a function of the power loss associated with variations in input voltage.

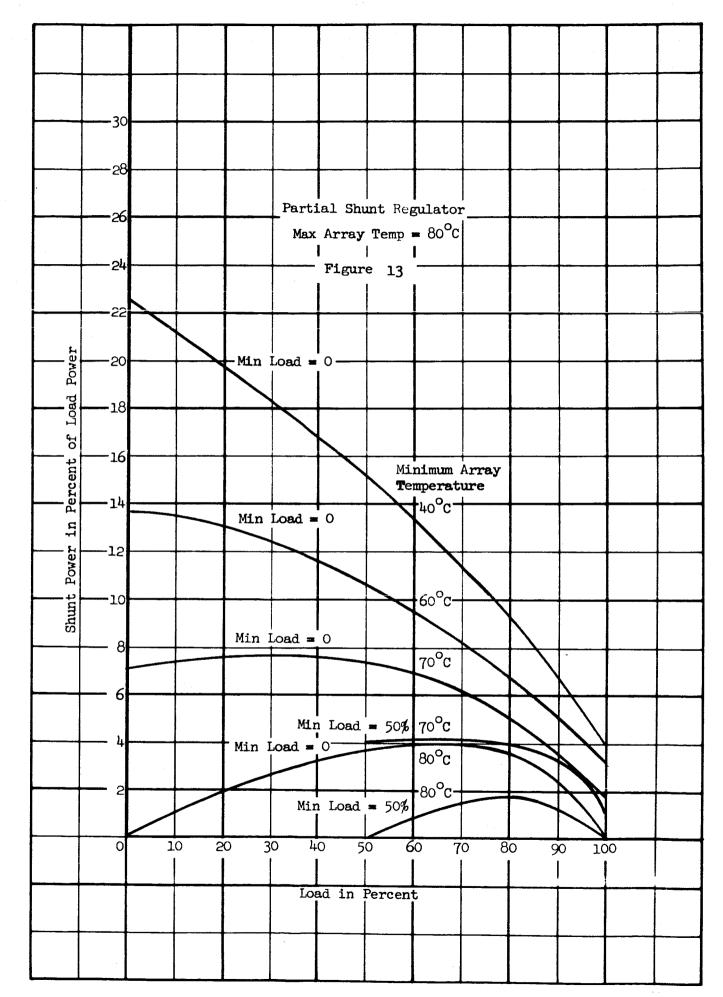
Shunt Dissipative Regulation. This is another dissipative type of regulator, and requires that the input voltage (i.e., the full solar array voltage) be at least equal to the desired bus voltage under the worst conditions. The advantage of partial shunt regulation as compared to a full shunt or series dissipative

TABLE VIII
POWER SOURCES CONTROLS

Usage	Battery Charge Control	Protection Feature	Battery Temperature Control	Regulator Limits	Type of Regulator
ABLE	Trickle Charge Switch	Undervoltage Bus	Thermal Control to Trickle Charge (43°C)	+ 50%	None
VELA	Current Limited	Undervoltage Bus	:	+ 5%	Pulse width modulated series regulator
PIONEER	Floats on Bus	ON-OFF Battery Switch (Command)	:	Unregul- ated	None
RELAY	Current Limited	Undervoltage Bus	Thermal Control to Trickle Charge 26°C to 28°C		Full shunt voltage limiter and series regulator for selected loads.
TIROS	Constant Current to Voltage Iimit		:		Full shunt voltage limiter and series regulator selected loads.
COMSAT	Voltage Limited (Individual Cell Monitoring)	Undervoltage Bus	Thermal Control to Trickle Charge	+ 0.4 v	Partial shunt voltage limiter.
. ODCE	Constant Current to Voltage Limit	Undervoltage Bus	Thermal Control to Trickle Charge (35°C)	+ 5%	Partial shunt voltage limiter.
POGO	Constant Current to Voltage Limit	Undervoltage Bus	Stop Charging at 43°C	+ 5%	Partial shunt voltage limiter.

configuration is that dissipation is reduced by having part of the solar array continuously feeding the bus, with the output of the remaining portion regulated by the shunt, which dissipates only as much power as necessary to keep the total voltage of the two portions combined below the specified value. The shunt is connected to a tap in the solar array selected in such a way that at maximum array voltage (minimum temperature), the shunt elements are driven into saturation and the array voltage is equal to the unshunted series section voltage plus the saturated drop of the shunt elements. With this type of regulation maximum dissipation occurs generally at minimum load. The graphs of Figures 10, 11, and 12, show dissipation of a partial shunt regulator as a function of minimum array temperature and minimum load for maximum array temperatures of 80, 60, and 40° C respectively.

The variation of dissipation with load becomes much less pronounced at smaller temperature variations, as does the amount of dissipation required. The effect of variation in maximum array temperature (and therefore in temperature range) can be seen by comparing the three figures. For example, the no-load curve of Figure 10 indicates 48 percent dissipation when the temperature varies from a minimum of -60°C to a rather hot 80°C maximum. If the maximum is held to 60 or 40°C, the corresponding dissipation become 38 or 32 percent respectively (for the same minimum temperature).


Figure 13 shows the relation of shunt dissipation to electrical load on the system, indicating that maximum dissipation occurs, as already noted, at minimum load for typical solar array temperature ranges. This characteristic illustrates a significant advantage of the partial shunt type of regulation, since it shows that losses are minimum when the load requirements approach the solar array power capability.

Pulse Width Modulating Regulation. Regulators of this type utilize power transistors in a switching mode with controlled duty cycle to effect the voltage regulation, and generally offer higher efficiencies than do dissipative regulators at the cost of a loss in frequency response and output impedance. They approach maximum efficiency as the difference between input and output voltages becomes smaller, which makes them suitable for power control functions. In this type of application the input and output voltages are usually similar and normally do not reach a ratio as high as 2:1. The following paragraphs discuss the characteristics of three types of pulse width modulating regulators: bucking, boost, and buck-boost.

		0 25% 50%		8
		Load #		2
	O°C	Min Min Min Min		9-
	Shunt Regulator ray Temp = 80°C 1 gure 10			- 25
	Max. Array Temp = Figure 10			0,
	Max. Ar			S S
				20
				0 10 2 I Temperature
				-10 (
	/ /			-20 Min.
				-30
				04-
	4-1-/			-20
				09-
205	07	S	10	02-
	Load Power	pation in Percent	issid .xsM	

			-													
	+			-			ļ								 	
	_													೭–		
														% %		
								-				/				
				lator	၁၀၀									S-		
				Regu.	- du	ii —								우-		······
				Shunt	Max Array Temp = 50°C	Figure								g-		
				rtial	ax Arr	표 						/		ୃ –	o u	
				Pa	ž									워_	Min Array Temperature in	
									/ ,	/				o -	mpe ra	
				1										-10 -	ay Te	110000
														50 -	In Arr	
								,							W	
						0	25%		50%			•		-30		
<u> </u>						Load		1	- 7				·	0 1 -		
 				+		Min Lo	Min Load		Min Load				-	-50	+	
-	+			+	· · · · · · · · · · · · · · · · · · ·	2/	×		×					09-		
	-	50	<u> </u>	+	· ·	0	, , , , , , , , , , , , , , , , , , ,	2	Co		C	2		0_	_	——————————————————————————————————————
			`	\downarrow												
					OMEL,	Load P	tueox	∍a ui	pation.	faaid	4unus	. x.s.M				

20

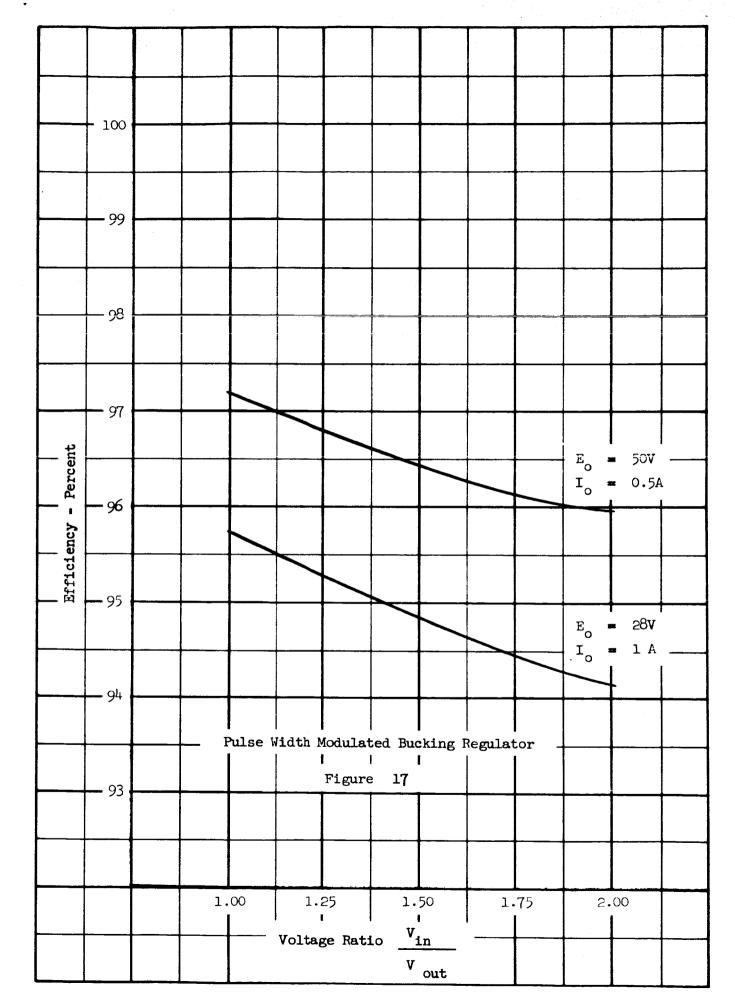


As its name suggests, a bucking regulator is one for use where the input voltage is always higher than the output voltage. The basic block diagram for this type of regulator is shown in Figure 14. The output voltage is related to the input voltage by the ratio ton/T, where ton is the ON time of the switch and T is the total drive period. Figure 15 shows typical series losses for a range of output currents under saturated conditions, when losses are a function of output current only. Figure 16 indicates how efficiency varies with output power and with output voltage; these curves represent the losses which occur just prior to full saturation of the switching elements, when off time is minimum. They show that higher efficiencies are associated with higher output voltages.

Variation in efficiency with change in input voltage (assuming a constant output voltage) is shown in Figure 17 for two output voltages. The increase in losses as the voltage ratio increases results primarily from greater switching losses. Regulators of this type have been implemented with weight-to-load power ratios of 0.75 pounds per watt.

A boost regulator is one used where the input voltage is always less than the output voltage. Figure 18 is a block diagram of a constant-frequency boost regulator of the pulse width modulated type. This case is the inverse of the bucking regulator, the ratio of input to output voltage being the ratio of T to $t_{\rm off}$, with T the total drive period and $t_{\rm off}$ the off time of the shunt switching element.

Maximum efficiency of this type of regulator occurs not when the two voltages are the same, but when the input voltage is slightly higher than the output voltage (not a normal condition for this type of regulator). The shunt element is open in this case, with all losses confined to the series elements. This condition occurs when the power available from the solar array is maximum (i.e., low temperature in sunlight). Figure 19 shows the losses of this type of regulator as a function of load current, and Figure 20 shows the efficiency as a function of output power for varying output voltages. As in the previous case, the curves are taken for toff almost equal to T, and losses are greater



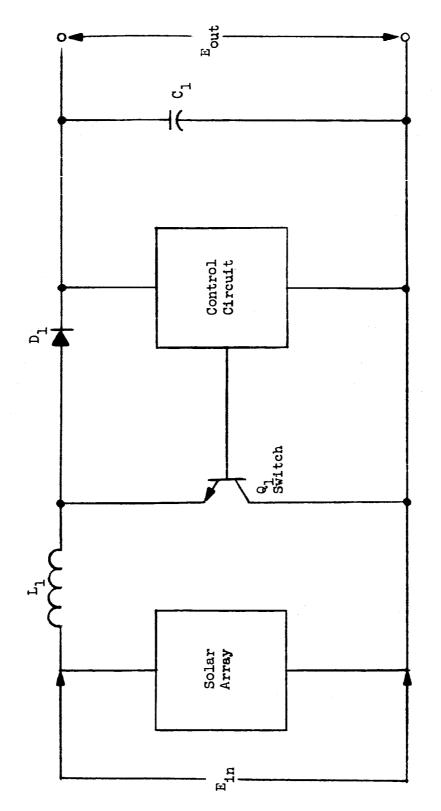

Pulse Width Modulated Bucking Regulator Block Diagram

Figure 14

						118				
1.4										
1.2										
1.1										
1.0										
s in Watts										
Power Loss										
.6										
.5						,				
.4		Pulse Width Bucking Regulator								
.2			rated Condi Figure 15	tions						
.1										
0	1.0 2.	0 3.	0 4.	.0						
	Iout	Amps								

				1.										
					20 V					gulaton	ation		8 —	
					"					ng Reg	Saturation			
										Bucki		- - 91 - —	8 —	
										lated	ior to	Figure		
										h Modu	JES Pr	F1.	£ —	
			_							Pulse Width Modulated Bucking Regulator	Power Loss Prior to Full			
						 :	 			Puls			9 —	: :
							 							Watts
													오 —	
														Power Out
													약 —	<u>р</u> ,
									15 V					<u>.</u>
													30	
													50	
													cu	
													0	
													10	
		1001		8	2	8	R	7	ţ	8	36	8	×	
ı	<u> </u>					rcent	- Pe	crency	ELL				······································	

Pulse Width Modulated Boost Regulator Block Diagram

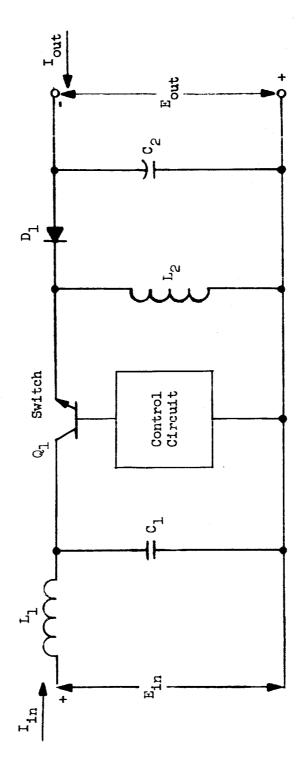
Figure 18

									·	, .			
		·											
					l .	lse Wid ries L					1		
							Figur	e 1 9					
				* .									
	4.0												•
Watts	—3.o												
#													
r Loss	— 2.0												
Power													
	-1.0									-		_	
·													
					-							·	
	0		1		2 Amns	Outpu	3		1				
					wmbs	outpu	16						

			Λ 05			_ a		15 V Figure 20	0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160	Power Out - Watts
100	00	ς ξ	7 6		% (3		91	06		

for lower voltages. Figure 21 shows that for this type of regulation the efficiency is greater for high input/output voltage ratios.

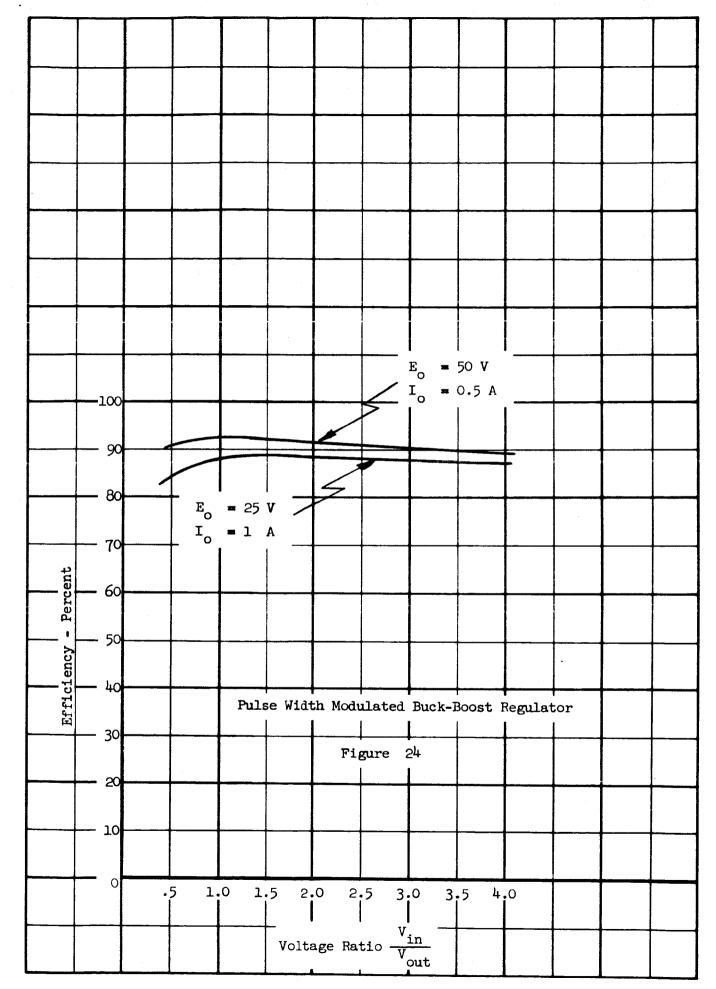
In the third type of pulse width modulated regulator, the buck-boost type, output voltage is related to input voltage by the ratio $t_{\rm on}/t_{\rm off}$, which are respectively the On time and OFF time of the switch. At a 50 percent duty cycle for the switch these two values would be equal and the input and output voltages would also be equal. Where $t_{\rm on}$ is greater than $t_{\rm off}$ the circuit boosts the voltage, and the inverse case bucks (i.e., reduces) it. Figure 22 is a basic block diagram of this type of regulator. In this case also, efficiency is greatest when the voltage ratio is nearest unity, as shown in Figures 23 and 2^4 , but varies with the output voltage chosen. As in the other cases, the higher output voltage shows the smallest losses. The major disadvantage to this type of regulator in comparison to the buck or boost types is its lower efficiency (note the lower absolute values of efficiencies shown in Figure 2^4 for a given voltage ratio as compared to Figures 17 and 21). When the regulator is in the boost mode the saturated switch and series choke losses are predominant, while in the buck mode the switch losses predominate.


3.3.2 Power Conditioning Equipment

<u>Design</u>. Power conditioning is the generic term used to describe the function of accepting electrical power of specified characteristics and altering it to meet the specific requirements of using equipment. The resulting power, sometimes called secondary power to distinguish it from the prime or unconditioned power, is supplied to the using equipment at the required voltages (and with any other required characteristics). The units used to perform this function are ordinarily classified as inverters, converters, and transformer-rectifiers. The three basic functions usually performed by power conditioning equipment are:

- o Regulation
- o Inversion (DC to AC)
- o Rectification (AC to DC)

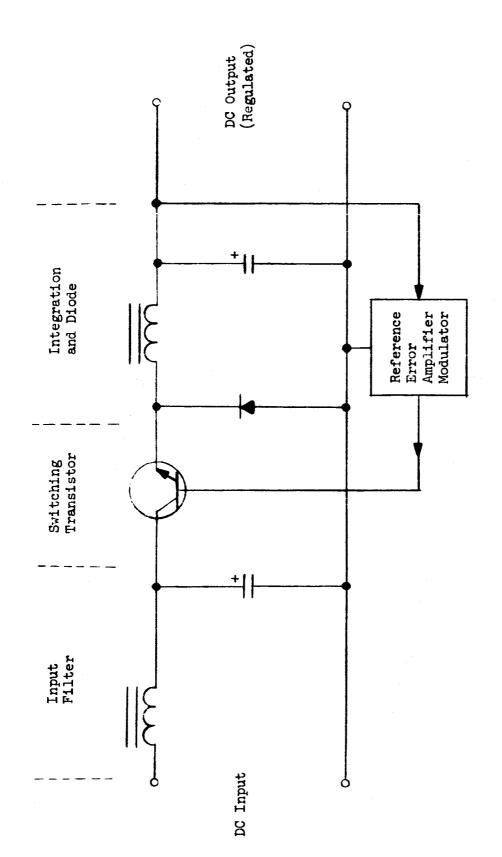
In some cases it is possible to combine regulation and inversion in the same circuitry by modulating the drive to the inverter switching transistors so as to produce a constant volt-second integral to the inverter transformer. This


-														
			.											_
-														
													:	
-														
					 Pulse	 Width	l Modula	l .ted Bo	ost Re	 gulato	r			
					[ļ							
				<u> </u>			Figur	e 21						•
ent	_	- 100							<u> </u>			-		
Percent														
1														
Efficiency														
cte	\dashv	- 98											.,	
E F												٠		
		- %												
		7-								i		E _o	= 50 = 0.5	V.
<u> </u>												, o	= 0.5 1 1	Α
					:									
		- 94				-						e E	 = 25 V	
												O	= 1 A	
					-				<u> </u>			0	ĺ	
		_ 00								· ;				
		- 92												
	_													
		- 90 -	0	.2	2	•	4		6	•	8	1	0	
	\dashv					 -	_	T T						
						Volt	age Ra	tio _v	in out					
								·	out					

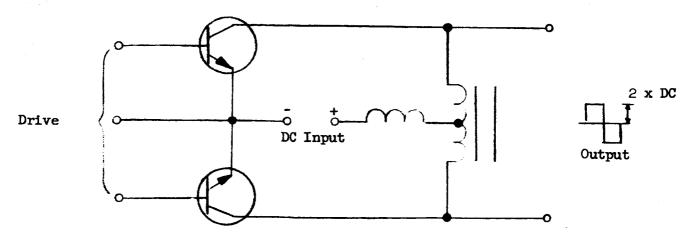
Pulse Width Modulated Buck-Boost Regulator Block Diagram

Figure 22

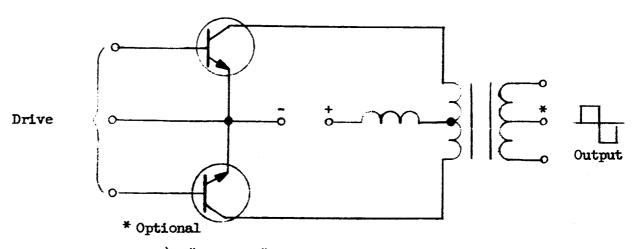
								· · · · · · · · · · · · · · · · · · ·			
		<u> </u>									
	_										
		Puls	e Widt	h Modu	lated	Buck-F	Boost R	Regulat	or		
				Fi	gure	23					
					<u> </u>						
										ļ .	
	4.0	300st <	> Bucl	2							
د ا ه	1										
in Watts	3.0										•
Loss 1		ackslash									
ا دا	2.0								E _o =	25 V 1 A	
Po									E =	50 V	
									I _o =	 	
	1.0										
	0	5 1.	0 1.	5 2.	0 2.	5 3	.0 3.	.5 4.	.0		
				Volta	ge Rat	io V	<u>n</u> out				

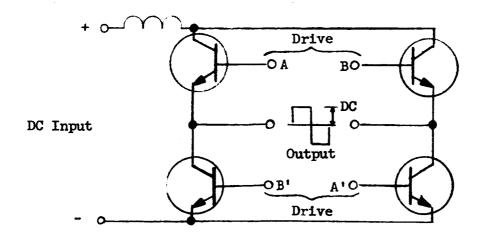

approach can only be used, however, with low input voltages and relatively low power levels; the limiting factor is the peak collector voltage and current of the switching transistor.

Where separate pre-regulation is necessary, a circuit such as that shown in Figure 25 can be used. In this design, the input filter serves to smooth out spikes and high-frequency transients with large peak values but low volt-second intervals, to eliminate input ripple having frequency components at or near the modulating frequency of the switching transistor (which would produce low-frequency components by heterodyning; these would go through the integrator and back to the primary bus without attentuation), and to attenuate AC components produced by transistor switching. The integrator portion of the circuit serves to smooth the "chopped" DC, and the diode conducts when the transistor is off, permitting continuous current flow through the integrator inductor. The inductor then becomes, along with its capacitor, a means of storing electrical energy. The switching transistor "chops" the DC at the output of the input filter in such a way as to produce a constant volt-second integral into the integrator.

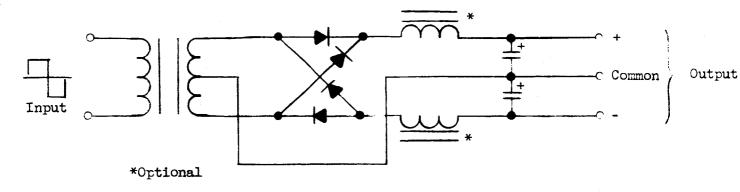

Implementation of the inversion function is relatively simple. Figure 26 illustrates three versions of inverters, two with transformers and one without. The inverter can obtain its drive from the same source that produces the unmodulated drive for the pre-regulator. Some current feedback from collector to base of the inverter transistor will reduce drive source power and improve efficiency.

Conversion can take various forms, as shown in Figure 27. When the secondary power is DC, the inverter output must be rectified and filtered. The designs of Figure 27 show isolation transformers such as would be needed with those source options shown as (a) and (c) of Figure 26, but the secondary for each converter in Figure 27 can be the secondary of (b) in Figure 26.

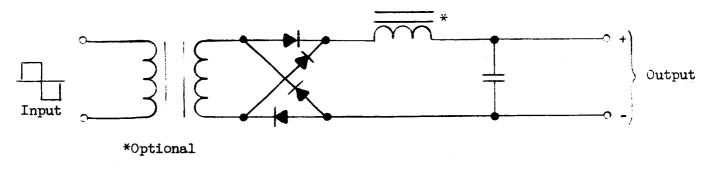

Details of Implementation. Probably the heaviest single part in the power conditioning equipment is the inverter transformer or the converter transformer (Figure 26 (a) and (b) or Figure 27). However, not all of the windings are used for the full switching cycle; for center-tapped windings, half


Typical Pre-regulator (Series)

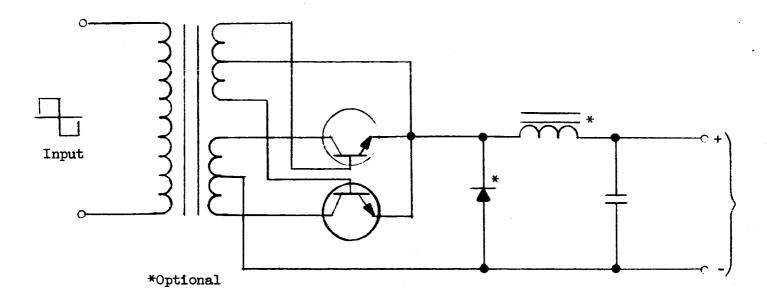
a) "Choppers" with Auto-Transformer



b) "Choppers" with Isolation Transformer



c) Bridge "Choppers" without Transformer


Types of Inverters Figure 26

a) Equi-voltage, Duo-polarity Converter

b) Bridge Circuit for High Voltage or Improved Transformer Utilization

c) Synchronous Converter (Very Low Voltage Only)

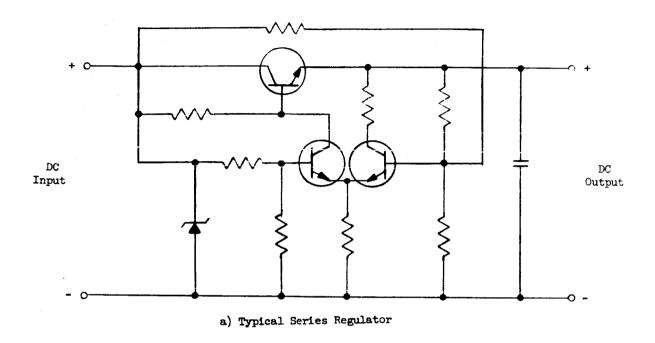
Typical Converters
Figure 27

are dormant for each half cycle. Figure 27 (a) shows a shared secondary winding that would be completely utilized if both output currents were equal, and is utilized to the extent that this is the case. In Figure 26 (a) the inverter transformer has a 100 percent utilization factor.

The filter capacitors shown in Figures 25 and 27 are usually ceramic or tantalum types, with the tantalum type available in foil, solid, or wet versions. Selection of capacitors has a significant effect on weight, since they are in the same weight range as transformers. Consideration must also be given to system frequencies, since these capacitors tend to become inductive at frequencies in the megacycle range. This makes it difficult to achieve low output impedance at high frequency, compensate a high-gain amplifier, or suppress high-frequency components for EMC (electromagnetic compatibility) reasons.

The inductors shown in Figures 25 and 27 are the DC carrying types which make use of the air gap to store most of the energy while leaving the core with sufficient permeability to act as an inductor toward AC components of energy. In those cases where the inductors are shown as optional they can be eliminated if the AC waveform is square or nearly square. They are needed in applications with severe noise (EMC) or ripple requirements. Care must be taken with inductors at high frequencies, since they tend to become capacitive above one megacycle. Weight is also an important consideration in their use, since they weigh more than resistors, low-value capacitors, transistors, or diodes.

With regard to semiconductors, most high-reliability or high-temperature applications call for silicon rather than germanium types, even though silicon has a larger saturation voltage drop than does germanium. When semiconductors are used in switching modes, there is the usual I-V loss for forward conduction and in addition a storage carrier effect, which causes the device to remain conducting into the next half cycle, after the complementary diode or transistor has turned on. This results in a short circuit for a brief period. These losses can be significant and may be within an order of magnitude of the other losses.


There are times when the secondary power circuits must perform with better than normal ripple or regulation, or lower than average output impedance due to dynamic loading (pulsed loads). Then this is neessary, active filtering must be used in the outputs following those converter circuits shown in Figure 27. Series regulators, Figure 28 (a), may be used where the dynamic range of regulation is not too great. Normally the preregulator function produces about one percent regulation to the inverter transformer secondaries for line, DC load, and temperature variations combined. The dynamic loads are usually pulsed demands for current which otherwise would produce significant voltage transients. The shunt regulator, Figure 28 (b), may be used for wide range dynamic loads.

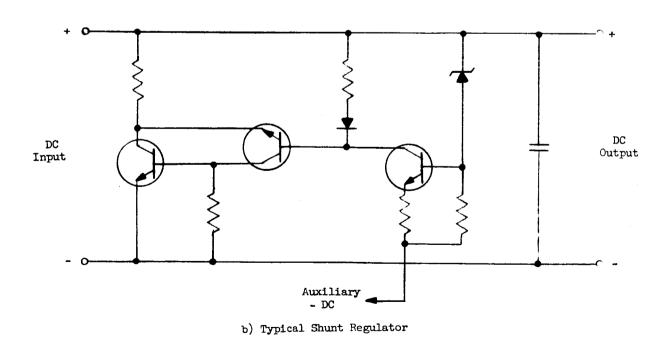

Parametric Data. The parametric data accumulated to date on power conditioning equipment relates almost entirely to DC-DC converters. The following discussion will therefore cover power converters only, with discussion of inverters and transformer-rectifiers left to a subsequent report. Since DC-DC converters include an inversion function and a transformer-rectifier function, much of the technology is applicable to units performing those functions alone.

Table IX summarizes the pertinent electrical data on the converters included in the eight power systems under consideration. It can be seen that there is a wide range of characteristics, corresponding to the wide range of using equipment requirements previously noted.

With regard to converter weight, packaging densities for electronic components of 0.030 to 0.045 pounds/cu. in. are being achieved; the total weight of mechanical hardware ranges from 33 to 100 percent of the weight of the electronic parts used in the unit, with the average about 50 percent. Operating temperature affects weight, since high temperature require more structural mass to remove heat.

The parameter of most interest for this study is converter efficiency.
Weight in turn is affected by efficiency and switching frequency. Figure 29 shows the relationship of all these parameters. It can be seen that:

Active Filters Figure 28

TABLE IX

Able V No. 2 Transmitter Able V No. 1 Payload Vela Transmitter Vela Communications 18 +6 -2 12 +2 +2 +2 +2 +2 +2 +2 +2 -2 Transmitter Vela Transmitter Vela Transmitter 11 Transmitter 1		Voltage	Current	Regulation	(p-p)	Overload Protection	Swit ching Frequency	Transfenta	Pover (sette)	Mfletency
16 22.5 rter 22.5	+28 -22	+210 V -20 V -12 V	30 130 750	+1+1 # +	भ रहरू नेतन	Yes Yes	1.6 to 2.200	<10 millisecond	6.3 0.6 1.56	73
18 22.5 tter 22.5		4 6.0 V	10	ii ‡i √εν	1,5	Yes	۶ <u>۶</u>		4.7 0.6 12.65	
22.5 :ter 22.5	823. + 438	+6.0 V -6.0 V +10 V +16 V	150 28 280 21	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	२२ ४४४	Yes Yes	1.6 to 2.2KC 1.6 to 2.2KC 1.6 to 2.2KC	<10 millisecond	တဲ့ ကို ထို တို့ ကို ထို ထို	19
22.5 :ter 22.5 :atlons 22.5		-16 V 6.0 VAC	18	±0•3	보	Yes	\$: m :	
22.5 mitter 22.5 mications	+10	+6.5 V -6.5 V	275 1840	0 0 *8 +1 +1	10 MV 10 MV	Yes	3.0 to 3.5KC 3.0 to 3.5KC	131325262726272627272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727<	. 138	₫
22.5 mications	-50 +10	+70 v +23 v	270 130	000	350 MV 160 MV	Yes	3.0 to 3.5KC 3.0 to 3.5KC	< 134 < 134	21.8	70
	-13 +10	+16.2 v +10.0 v -6.2 v	20 140 15	0 0 0 0 0 0 0 0 0		Yes	ន្ទន្	, 22, 2 22, 2	1.91	87
		-16.2 V +28.0 V	, o 1, 6,	+1++	160 MV	Yes	3.0 to 3.5KG	រឺង៉ីង៉ឺ v v v		89
		+10.0 +10.0	238			Yes Yes	2 2 2	9 V V V	3.67	

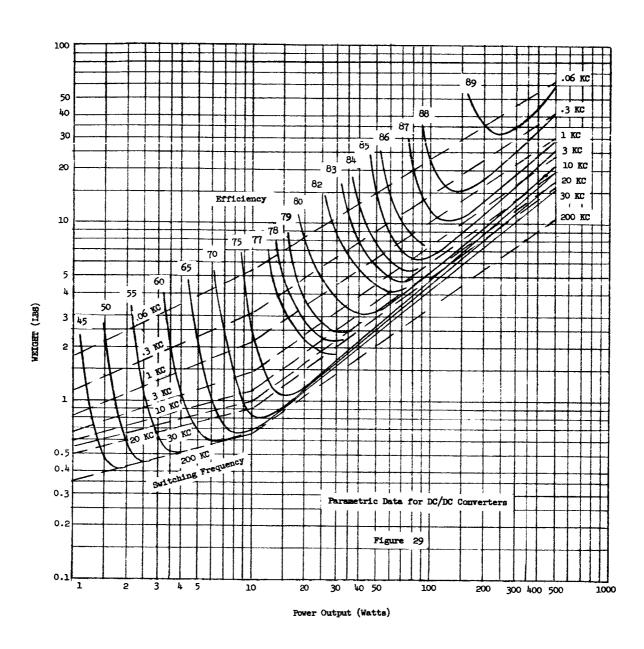
TABLE IX

CONVERTINGED)

Efficiency \$ 8 2 8 60 # Output Power (watts) 0.36 0.36 0.12 6.98 9.0 23.1 2.9 26.0 19.2 2.5 2.1 Transfents 0000 0000 0000 # # 52 **% %** ጜጜጜጜጜ ፞ Switching Frequency 843 843 CPS CPS 5.6 KC **5**65 Overland Protection Yes Yes Yes Yes Yes Yes Yes Yes Yes Output Ripple (p-p) # # # 10.01 10.00 15.00 ##### 111111 080800 #5.0% # 2.0% Output Regulation # 5°0 + 5°0 #38 Output Current ma 2-10 32-40 .02-.2 300-400 110 76 77 77 77 82 82 13 10 10 10 60 60 60 333 886288 **275** -940 V -545 V +80 V +4.875 VAC +12.8 v +16.7 v +16.7 v +16.0 v +16.7 v +16.7 v +16.7 v +15.8 v +15.0 v Output Voltage +16 v +9 v +5 v -6 v > > + 53 + 524 Imput Regulation 297 24.5 29 \$1 97. Input Voltage କ୍ଷ ജ ജ ည 000 No. 1 and 10 Pioneer Transmitter Pioneer Equipment No. 3 and Usage No. 2

54

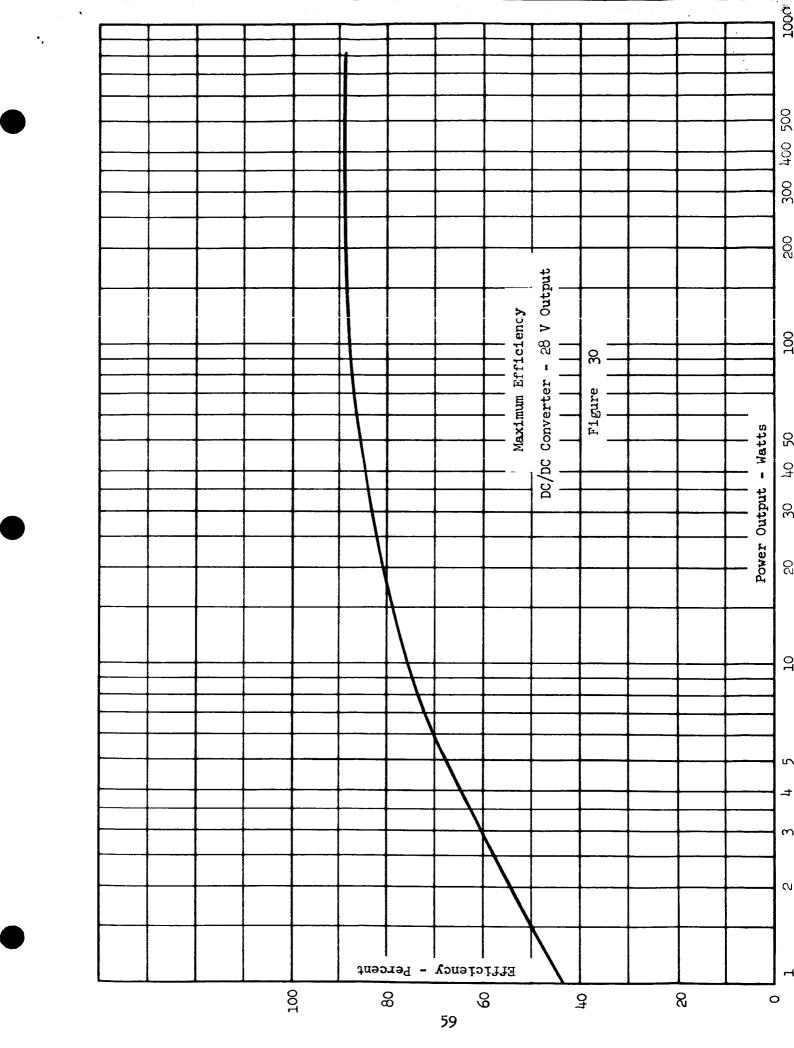
TABLE IX

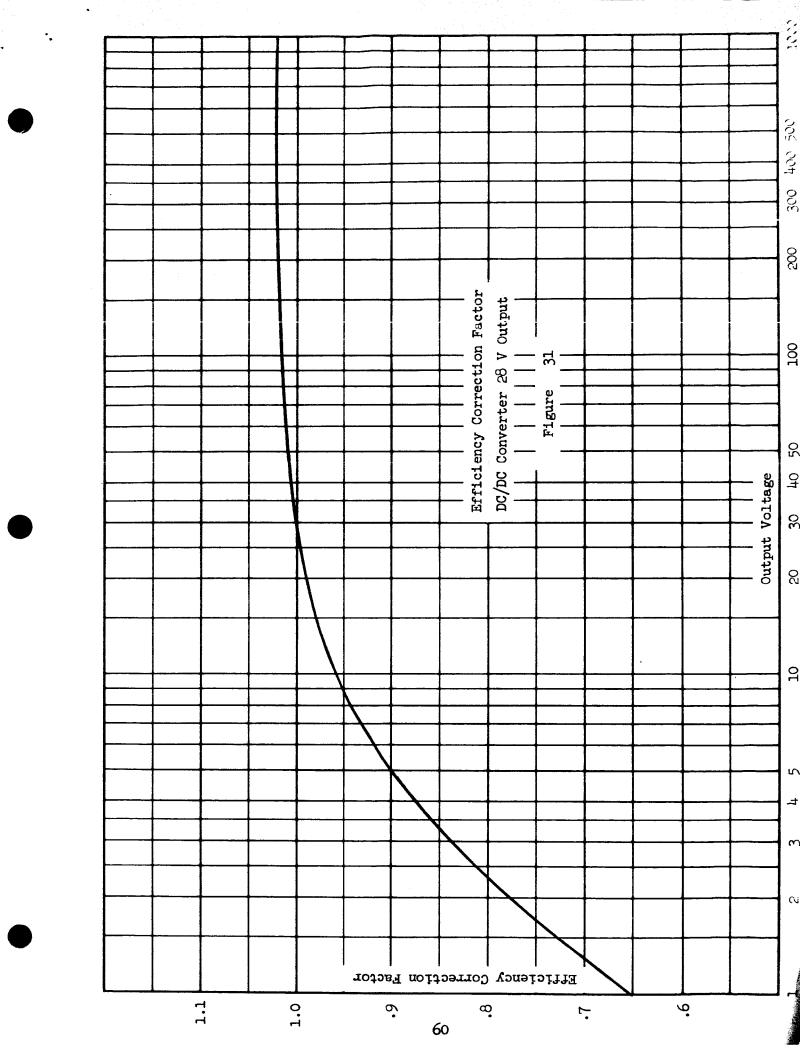

		Thmit		+ + + + + + + + + + + + + + + + + + + +	4	CONTRACTOR (CONTINUED)	(de				
Usage	Input Voltage	Regulation %	Output Voltage	Current ma	Negulation	Ripple (p-p)	Overload Protection	Switching Frequency	Transients	Output Power (watts)	Efficiency \$
No. 5 and 6	8	16	+16 v +9 v -6 v -16 v	300 280 10	00000	3333	Yes Yes Yes	2461 CP8 2461 CP8 2461 CP8 2461 CP8	# # # # \$25.50 \$	4.8 7.1 0.2 13.8	09
No. 7 and 8	82	- 16 - 16	+ + + + + + 4 A A	8948	0.00 0.00	0 0 0 0 0 0	Yes Yes Yes	2461 CP8 2461 CP8 2461 CP8	# # # W W W	0.32 0.97 0.12 1.41	%
6 • 0	88	+20	+ 20 V +10 V -20 V + 28 VAG, CT	350 350 385	4 & 4 & 2 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 &	3.55	Yes Yes Yes	2461 CP8 2461 CP8 2461 CP8 2461 CP8	# # # # \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7.0 0.5 17.0 10.8 25.3	52
ACS Inverter 350 V A 2 p 400 cps	ଥ	% 9 1	+ 115 v + 188 v + 188 v + 188 v + 138 v + 133 v + 135 v + 135 v	130 115 115 110 110 110 1240 1360	00 * 00 *	*		00 17	# # # # \$\frac{1}{2} \frac{1}{2} \frac{1}	15 12 13 13 13 13 13 13 13 13 13 13 13 13 13	15

Varies proportionally with input

TABLE IX

	1		
	Efficiency %	8	73
	Output Power (watts)	139 139 139 151	2.5 2.48 2.48 2.48 1.3 74.3 12.99
	Transtents	#	
	Switching Frequency	400 CPS	12 KC
(Q 2	Overload Protection		Yes
CONVERTERS (CONTINUED)	Output Ripple (p-p)	‡	
CONVERTER	Output Regulation	±2% ±2% Varies pro- portionally with input	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	Output Current ma	130 167 115 1110 1110 1110	77 208 208 411 208 165
	Output Voltage	+ 115 V + 18 V + 26 V + 125 V + 26 V + 135 V + 135 V	+ 28 v + 15 v + 10 v + 6 v - 6 v
	Input Regulation	91-	+1 50 :
	Input Voltage	28	&
	Usage	0G0 MON-Gated Inverter	Comst Equipment Converters


No volcage apilies greacer than 15% of the output



- o Efficiency increases with power level. This results from the fact that there are certain fixed losses in a converter, and these naturally become a smaller percentage of the total as power is increased. In addition, the variable losses increase at a slower rate than the power level and thus also become smaller in proportion.
- o Higher switching frequencies result in considerable reduction of weight, but at the same time in lower efficiency.
- o High switching frequencies (100-200 KC) can be used at low power levels (up to 10 watts), but should not be used at higher power levels because of the loss in efficiency associated with long switching time characteristics of presently available power, switching transistors. The upper practical limit for a 500 watt power level, for example, is seen to be a switching frequency of 20-30 KC.

As the figure shows, there is a maximum efficiency attainable for any given power level. This is shown more simply in Figure 30, a curve of maximum efficiency versus power level for a typical 28 V DC-DC converter. As would be expected the efficiency increases with power level, but reaches a maximum at about 89 percent. This reflects the minimum attainable losses, which are attributable to I-V losses in the power switches, rectifiers, and magnetic components as well as to the fixed losses. Some increase in maximum efficiency may be attainable for low-power units by design innovations, and in high-power units by incorporating regulation in the inversion state.

Efficiency is affected, in part, by the magnitude and number of outputs. For single outputs other than 28 VDC, an efficiency correction factor, Figure 31, must be applied to compensate for rectification losses. At high voltage output, the efficiency correction factor (ECF) is greater than unity while at low voltages the correction factor is substantially less than unity due to the high rectification losses. For multiple outputs, the correction factor will also be utilized. An example calculation will be instructive. The problem is to determine the efficiency

of a 30 watt converter with five outputs as follows:

- 1. +15 at 5 W
- 2. -15 at 5 W
- 3. +28 at 10 W
- 4. +50 at 8 W
- 5. +3 at 2 W

The efficiency of a 30 watt converter at 10 KC switching rate from Figure 29, is 79%. The corrected efficiency is obtained by determining an overall efficiency correction factor (OECF) taking into account the respective power outputs and the ECF's.

Output	Efficiency Correction Factor (ECF)
+15	•98
- 15	.98
+28	1.0
+50	1.01
+3	.835

OECF =
$$.98(5) + .98(5) + 1.0(10) + 1.01(8) + .835(2)$$

OECF = .985

Corrected Efficiency = 79% (.985) = 77.7%

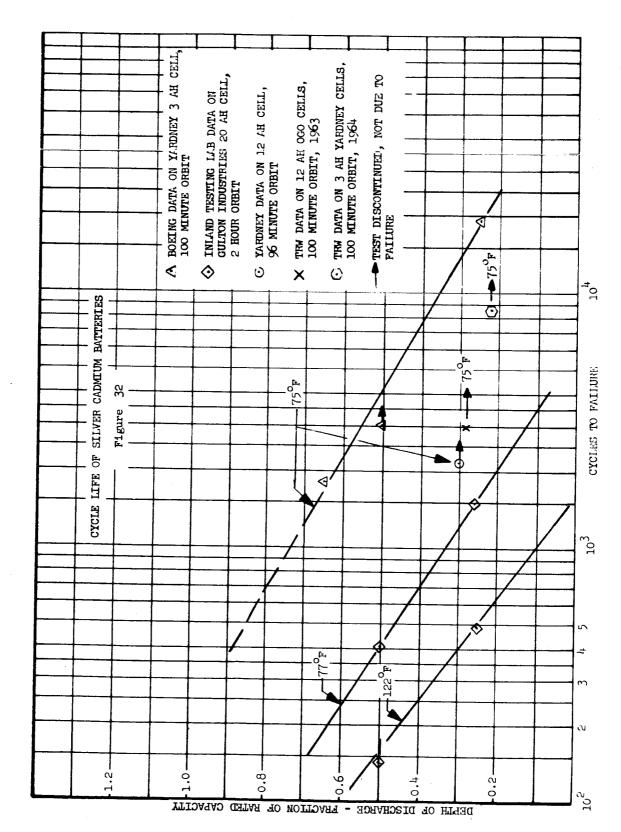
For DC/DC converters designed to operate at a particular input voltage when connected to a variable bus, efficiency decreases with higher input voltages. For a nominal 50 VDC input, converter efficiencies may increase approximately 2% reflecting the lower losses due to lower input current as compared to 28 VDC design. Voltages significantly greater than 50-60 volts will compromise the collector voltage breakdown ratings for available power transistors.

Standardization. Spacecraft requirements sometimes place undesirable physical and electrical performance constraints on the power conditioning equipment. Such factors as multiple output voltages, power proportioned for each output, tight regulation, low ripple, current limiting, and large input voltage range, cause the power conditioning equipment design to be less than optimum. All of these constraints limit serious design attempts toward standardization. However, despite this situation, attempts toward standardization are being made within TRW and presumably other companies. Discrete components such as resistors, capacitors, transistors, diodes, transformers, and inductors are assembled into packages called modules, which are named according to function and sub-function. These modules of cordwood and welded wire construction contained in a protective plastic housing reduce the number of visible nodes (terminals) and allow standardization. The finished "standard" module then becomes an entity which can be combined with four or more other modules to make a converter or inverter. These modules may be used unchanged in other applications, or with slight modification such as a change in resistor value.

The use of standard modules of this type helps to reduce costs, improve schedules, improve reliability and minimize electro-magnetic interference. The module approach yields an orderly arrangement of parts more readily producible with good packaging densities (.035 to .05 lbs/cu. in.).

3.3.3 Batteries

Electrical power systems for satellites or spacecraft basically have three choices of battery types - silver zinc, silver cadmium, and nickel cadmium. Because the state-of-the-art of sealed secondary (rechargeable) silver zinc batteries is not as advanced as the other two types, silver zinc batteries are not used for long life cycle operation. The primary (one shot) silver zinc is predominately used for short missions not requiring charge and discharge, and for peak power or emergency requirements on those vehicles having another source of continuous electrical power. The nickel cadmium battery has been in use the longest. However, the silver cadmium battery is being used more and more for two reasons: (1) it has a higher energy per unit weight, and (2) it is not magnetic in nature like the nickel cadmium. The nickel cadmium battery has a residual magnetic field, even when not in use. The magnitude and direction of this field varies as a function of its previous history of charge and discharge conditions.


To date, the nickel cadmium battery has demonstrated a better cycle life, but a steady improvement of silver cadmium performance is being realized.

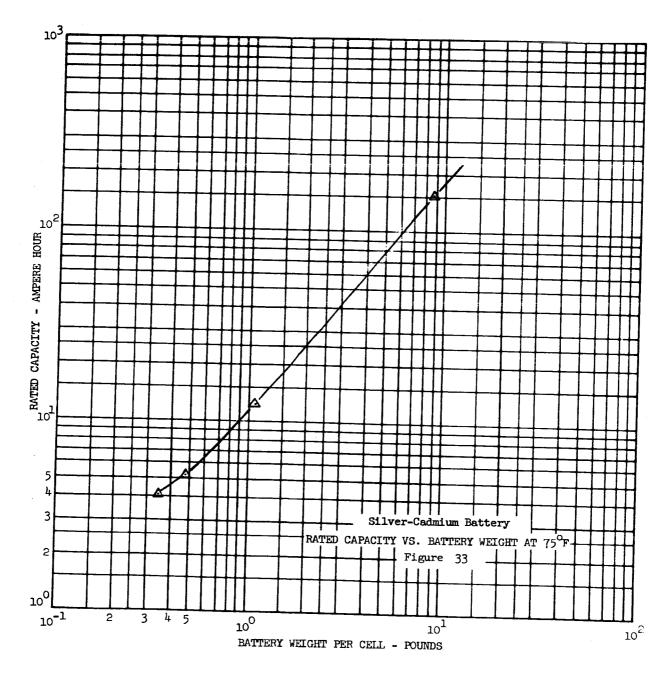
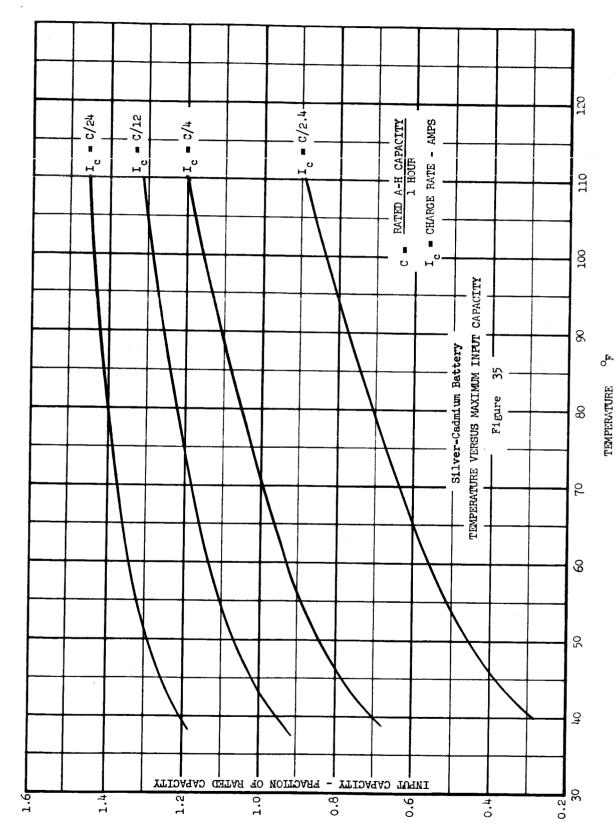
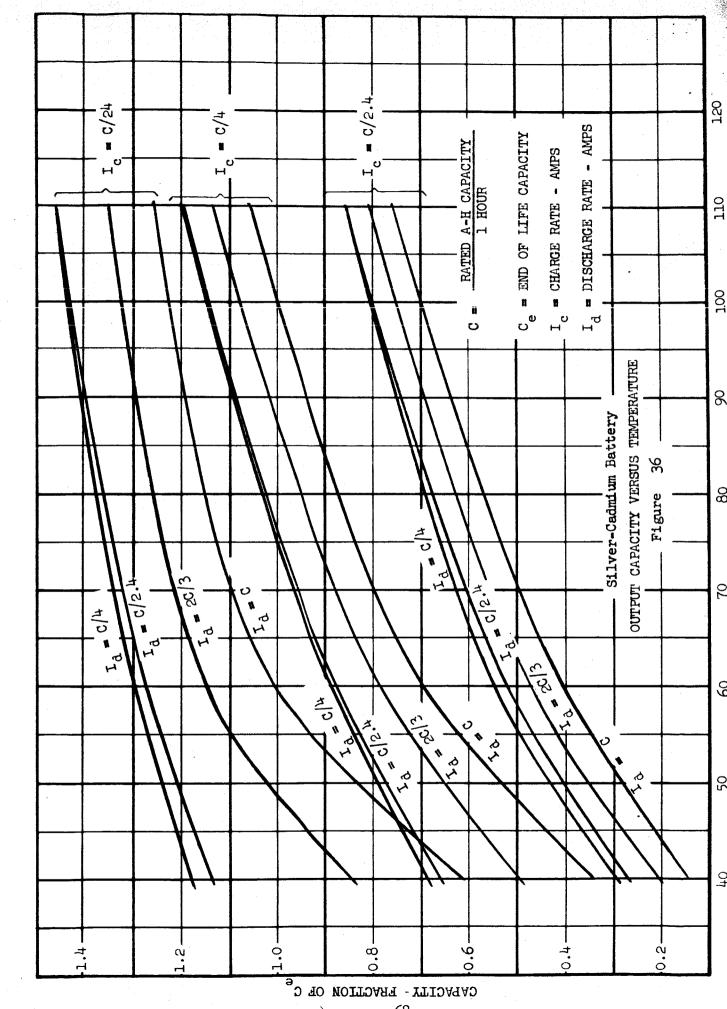
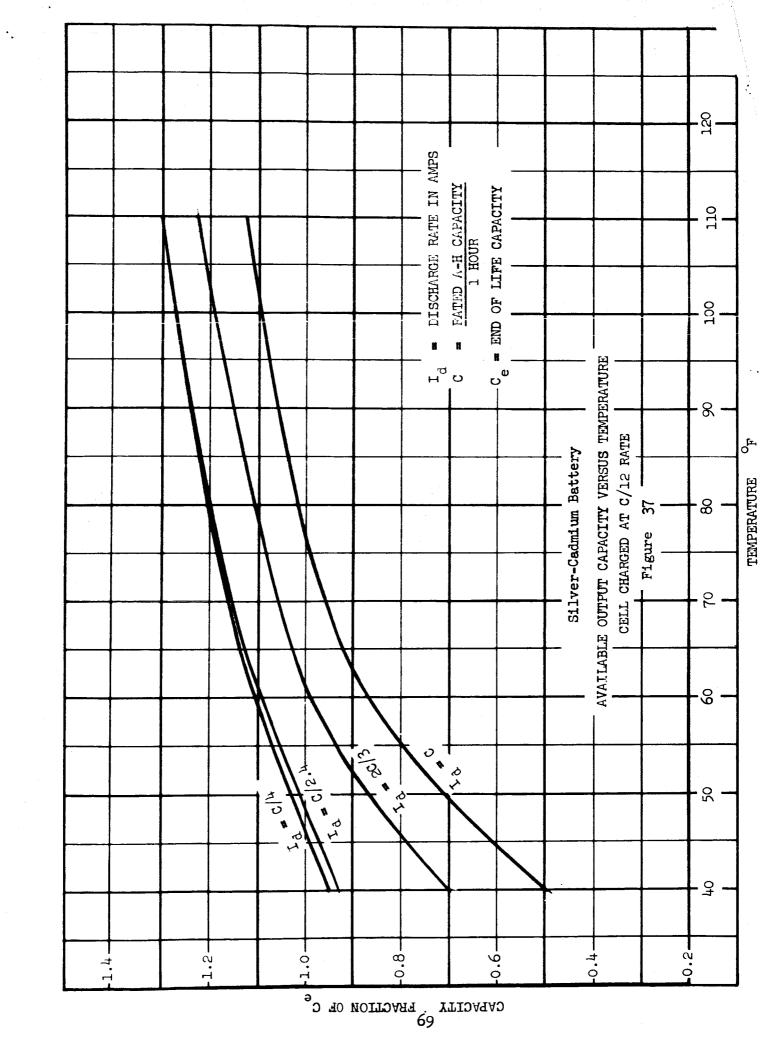
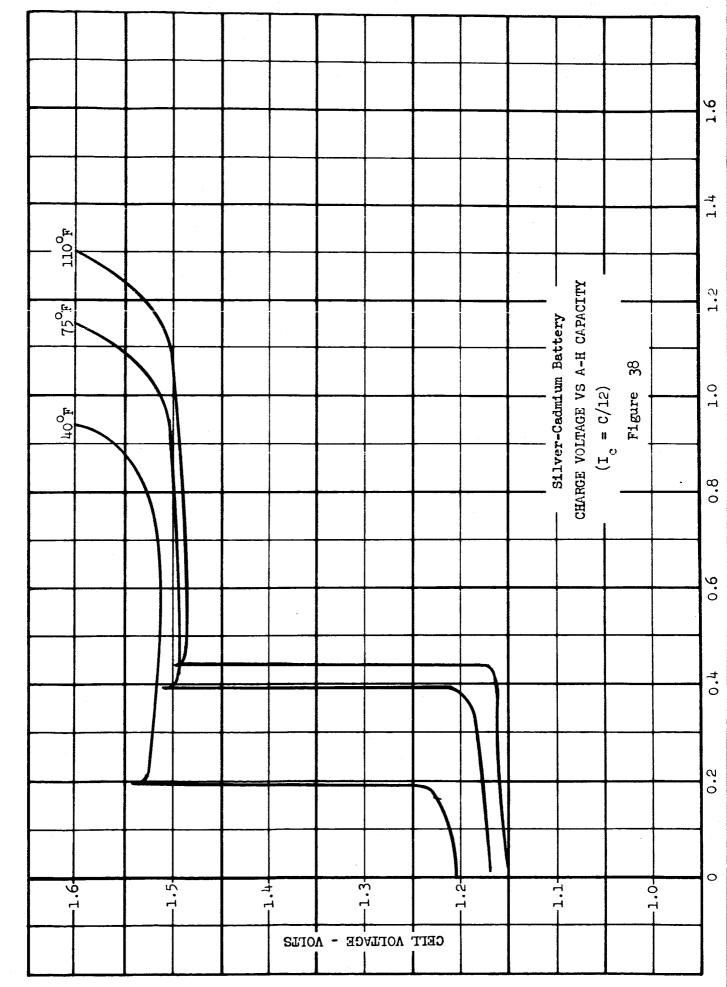

Design data for the silver cadmium batteries is presented in Most of these data have been reduced to parametric Figures 32 through 41. form such that reasonable comparison can be made with other battery types. Figure 32 presents data on cycle life as accumulated from various test programs, under varying conditions. Sufficient tests have not been completed and documented to provide the most reliable design data. Most of the data points were derived from available information on Yardney cells. The cell capacity ratings as defined by Yardney are based on a C/15 charge rate and C/10 discharge rate at room temperature. In the following discussion of silver cadmium batteries, the cell capacity ratings have been re-defined to C/12 and C/4 charge and discharge rates, respectively. This re-definition of rates de-rated the battery capacities to more realisticly agree with satellite applications which use only the higher rates. The criteria for "failure" is defined as an occurrence of a catastrophic failure such as a cell open or short condition - or the inability of the battery (not cell) to supply the required (DOD) depth-of-discharge in a given cycle.

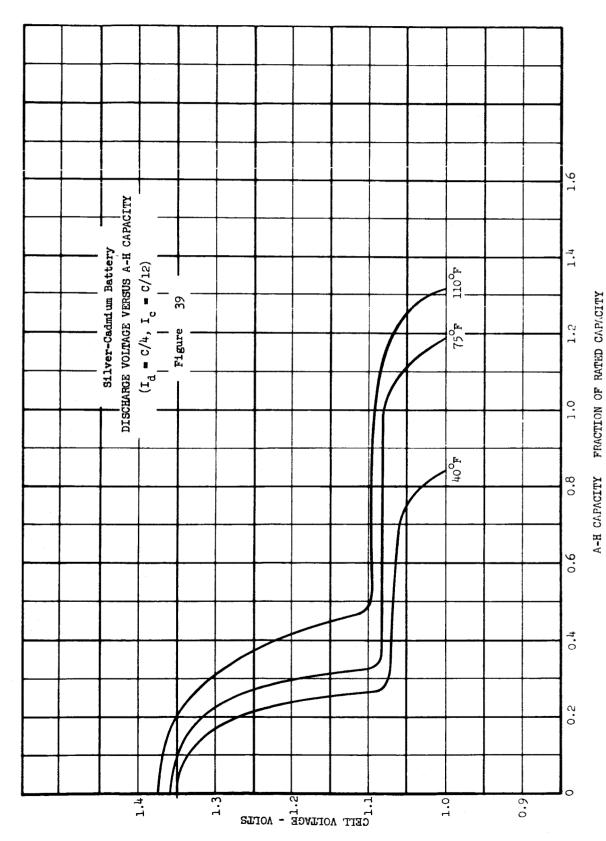
Figure 33 provides packaged battery weight per cell as a function of rated capacity. A packaging factor of 30% was used since the few existing designs fall in this area. However, as larger batteries are manufactured and used, a factor as low as 20% appears reasonable. The plot of temperature vs. ampere-hour efficiency in Figure 34, applies to any state of charge within the operating life of the battery. The maximum achievable input capacity is a function of the charge rate and temperature as shown in Figure 35, in terms of the end of life capacity.

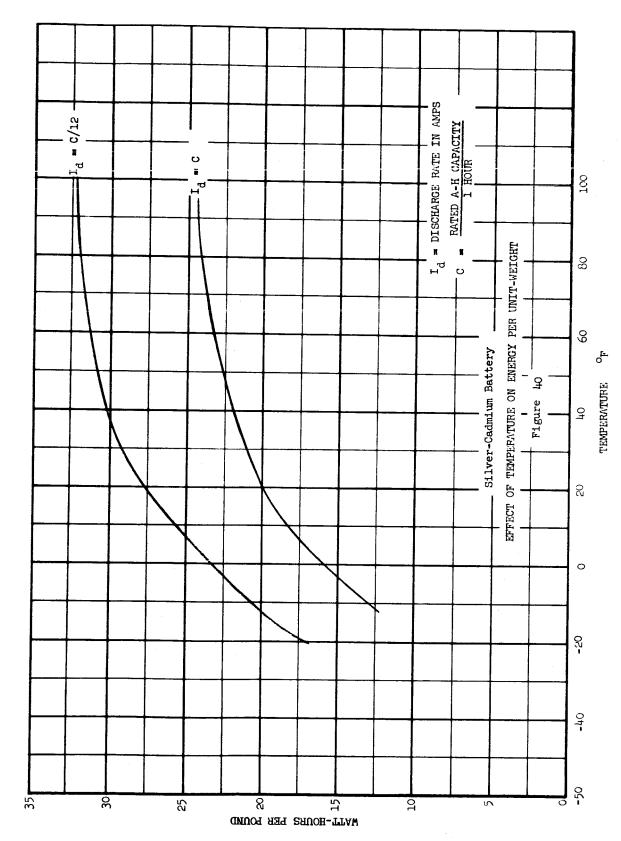

Output capacity varies with temperature, charge rate, and discharge rate. Figures 36 and 37 present the family of these curves in terms of (Ce) end of life capacity. The charge and discharge voltage curves as a function of capacity and at several temperatures appear on Figures 38 and 39. The relationships of discharge rate and temperature on energy efficiency and weight are shown in Figures 40 and 41.

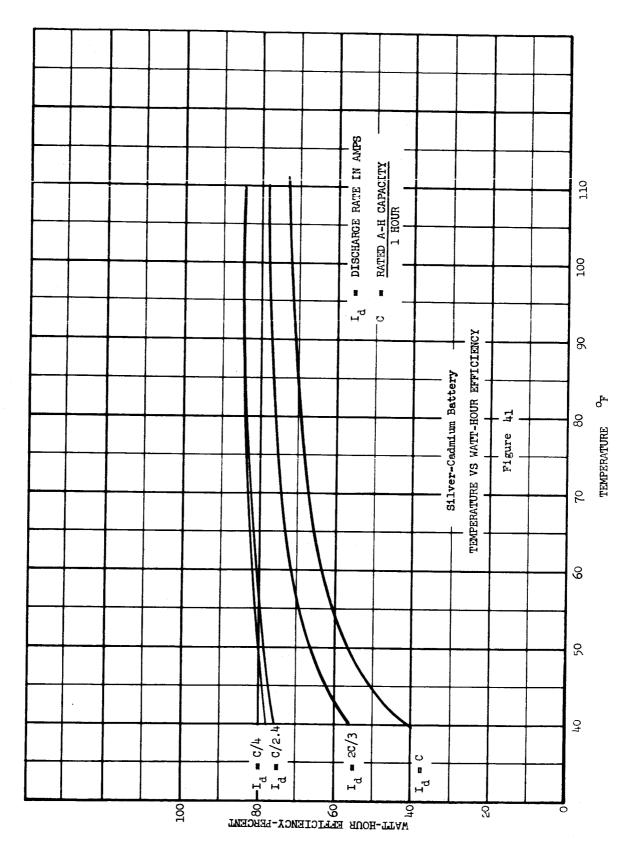

A similar set of parametric design data are presented in Figures 42 through 54, for the nickel cadmium batteries. Because this type of battery has a longer history, the data is more refined and lends itself to a systematic design approach. An example of a battery design will be used to demonstrate the use of these curves.











Example:

From the spacecraft mission and orbital considerations the following requirements are given:

Life	1000 cycles
Load Capacity (C _d) at end of life	3 AH
Discharge current (I _d)	3.0 Amps
Discharge Temperature (T _d)	50° F
Charge current (I _c)	1.5 Amps
Charge temperature (T _c)	96° f
Step (a): Assume $i_d = 0.5 \frac{Amps}{AH} =$	0.5 1/hr
Define: $i_d = \frac{I_d}{C}$	$c = \frac{I_c}{C}$

C_d = Discharge capacity at end of life for a given charge current density (i_c) and ampere-hour efficiency (7).

C_e = Maximum available capacity at
 end of life for a given charge
 current density (i_c) and discharge
 current density (i_d).

Ce = Maximum available capacity at end of life for a given optimum charge and discharge current.

Step (b): From Figure 42, at
$$i_d = 0.5$$
 and $T_d = 50^{\circ}$ F.

$$C_e/C_e' = 0.825$$
(Before any derating occurs, $C_e = C_d = 3$ AH.)
$$C_e' = \frac{C_d}{0.825} = 3.636$$
 AH

		; ⊢ 11	■ Maximum Available Capacity at end of life - AH	C = Maximum Available Capacity at end of life under optimum conditions - AH					1000	
		1 = Discharge Current Donsity -	C = Maximum Available	Ce Maximum Available under optimum con				Figure 42	80 90	Temperature OF
									02 09 10 10 1	
1.0	50.		0.3	ος. 1.0	oo A	tioaqa C	Tracti		40 50 	

1.0		C _d = Discharged Capacity at end of life		Figure 43	Nickel Cadmium Battery - Parametric Design Data	9. 60 1.0 1.2 1.4	Fractional Garactty (Cd/Ca)
				Figure	Cadmium Battery -		40 ⁰ F
100	08	09	04	8		02.	

				Hr!				1 1 1 V, 2		<u> </u>	
				- A	Ampe						
				11fe	ent (AH					
				nd of	Curr e (AH	11fe -				_	
				at e	harge C	of 1				- - -	
				acity	ان د ک	t end					
		4 _		e Cap	ensit	Ity a —				1.2	-
				1.1abl	ent De	(apac:					
	1.0	0.1	Č	O.UZ m Avail	Curr	rged (Data		0	
	1///			maximum Available Capacity at end of life - AH	= Charge Current Density - Charge Current (Amps)	Discharged Capacity at end of		Parametric Design		0.1	
			· <u> </u>	C #	D #	1		ric D			+ 3
			**	Ü	44	ບ້	45	ramet -		% <u> </u>	- 78°F
							1	1 -			78°F
							Figure	ium Battery		9. –	
								um Be			
								Cadmi			<u> </u>
								Nickel 		글 -	
								FN —	 		
										% –	-
5	3) 6	7	3	Ç	 } I	8			0 	
	m	 	ı mA tra	l eoreq i	- Кэпэ. !	I Effici I	। - अ क्ष्यः ।	vA . —			

Ce = Maximum Available Capacity at end of life - AH 1c = Charge Current Density - Charge Current (Amps) Ce (AH) Ca = Discharge Capacity at end of life - AH	% % % % % % % % % % % % % % % % % % %	Percent Ampe	От	Nickel Cadmium Battery - Parametric Design Data	 Fractional Capacity (Cd/Ce)
	THON 3.5	Percent Ampe	Ltcfency -	I egstavA	

|--|

$$i_c = \frac{I_c}{C_e} = \frac{1.5 \text{ Amps}}{3.636 \text{ AH}} = 0.4125$$

Figures 43 through 47 are a set of efficiency curves for various charge temperatures.

- Step (c): Assume a charge efficiency of 90%.
- Step (d): From Figure 46 having a charge temperature of 96° F read $C_{d}/C_{e} = 0.835$ for 7 = 90%, $i_{c} = 0.4125$
- Step (e): Let a new $C_d = 3.636$ AH from the previous C_e' calculation.

The new
$$C_e = \frac{C_d}{0.835} = \frac{3.636}{0.855} = 4.354 \text{ AH}$$

This should be the de-rated AH capacity required for these specific charge and discharge conditions. However $i_d = 0.5$ was assumed.

Step (f): Examine $i_d = 0.5$ assumption. $i_d = \frac{I_d}{C_e} = \frac{3 \text{ Amps}}{4.354 \text{ AH}} = 0.689$

Thus, $i_d \neq 0.5$ as assumed and a further iteration is required.

- Step (g): Return to Figure 42 for $i_d = 0.689$ and $T_d = 50^{\circ} F$. New $C_e/C_e' = 0.800$ $C_e' = \frac{Ce}{0.80} = \frac{3 \text{ AH}}{0.80} = 3.750 \text{ AH}$
- Step (h): Calculate new i_c $i_c = \frac{I_c}{C_e^1} = \frac{1.5 \text{ Amps}}{3.750 \text{ AH}} = 0.400$
- Step (i): From Figure 46 again obtain a new C_d/C_e where $i_c = 0.400$, 7 = 90% $C_d/C_e = 0.830$

$$C_e = \frac{3.750}{0.830} = 4.518 \text{ AH}$$

Step (j): Re-examine last value of i_d used

$$i_d = \frac{I_d}{C_e} = \frac{3 \text{ Amps}}{4.518 \text{ AH}} = 0.664$$

This $i_d \neq 0.689$ last assumed. A further iteration is required.

- Step (k): Return to Figure 42 for $i_d = 0.664$, $T_d = 50^{\circ}$ F

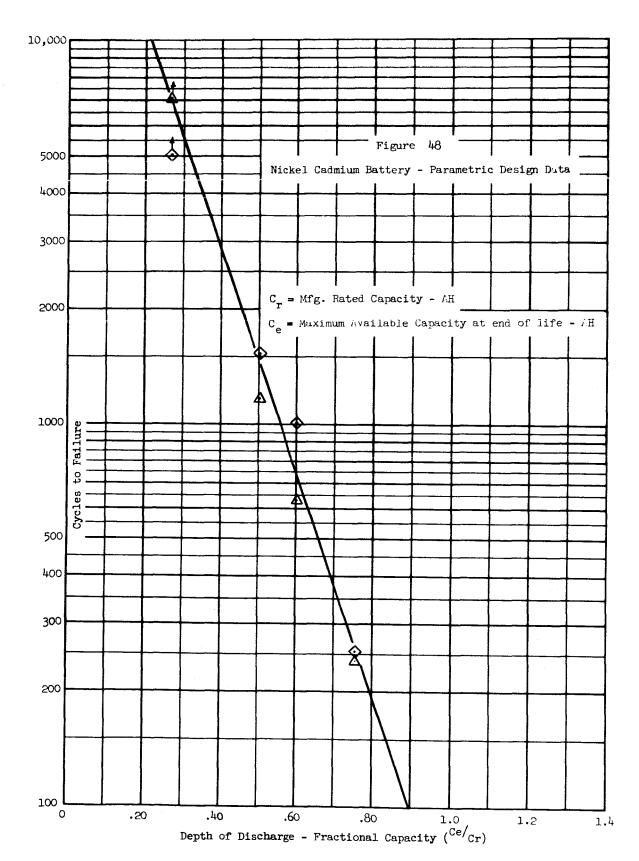
 New $C_e/C_e' = 0.805$ $C_e' = \frac{3 \text{ AH}}{0.805} = 3.726$
- Step (1): Calculated new i_c $i_c = \frac{1.5 \text{ Amps}}{3.726 \text{ AH}} = 0.4025$
- Step (m): From Figure 46, new $C_d/C_e = 0.832$ $C_e = \frac{3.726}{0.832} = 4.478 \text{ AH}$
- Step (n): Re-examining i_d assumption $i_d = \frac{3 \text{ Amps}}{4.478 \text{ AH}} = 0.6699$ This is close enough to assumed $i_d = 0.664$

Therefore:

$$C_e = 4.478 \text{ AH}$$

$$I_d = 3 \text{ Amps}, i_d = 0.67$$

$$I_c = 1.5 \text{ Amps, } i_c = 0.335$$

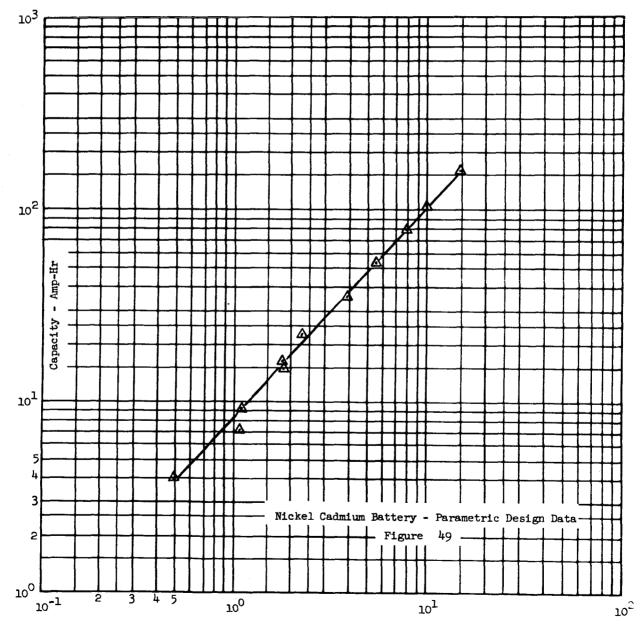

Step (o): From Figure 48,

The depth of discharge C_e/C_r for 1000 cycles is 55%.

Therefore the rated capacity required to be installed

for minimum weight and maximum reliability is

$$C_r = \frac{4.478 \text{ AH}}{.55} = 8.4 \text{ AH or } 8 \text{ AH}$$


Step (p): From Figure 49, the weight of packaged battery is

0.95 lbs per cell. The battery total weight is
determined by multiplying this number by the number
of cells required to meet the system bus voltage.

Efficiency data as a function of temperature, current and state of charge are extrapolations of experimental data obtained at a single current over a range of temperature. Experimental data at C/3 may be relied upon. Data at all other currents should be expected to show increasing error as the deviation from C/3 increases in either direction. No weighting, either for conversatism or optimism has been applied.

Cycling life versus depth of discharge data are those extracted from NASA - SP 5004, "Space Batteries", after eliminating the effects of discharge at low temperatures. Since these data already are statistically confounded with, and are inseparable from, the effects of current (which varies with depths of discharge in a 90 minute orbit cycle), when combined with earlier steps in the analysis, the result is a conservative approach.

Figures 51 through 54 show the effect that can be accomplished with a nickel cadmium battery by revitalization treatments. In effect, this restores the battery to near its original capacity after an extended period of cycling. By setting the period between revitalization treatments equal to or less than the original cycle life of the battery, mission life of the battery can be extended significantly. The limited data now available has not established any limit to the number of times a nickel cadmium battery can be revitalized and thereby multiply its original cycle life by the number of revitalization periods. This treatment has been used on some of the later TRW spacecraft power system designs.

Battery Weight - Pounds

1c = Charge Current Density - Charge Current (Amps)	0.3	8	9 0.05	01	Nickel Cadmium Battery - Parametric Design Data	Maximum Achievable State of Charge Figure 50		20 40 60 80 100 120 140 160	Temperature OF
120			acity - Per			Q V	C		

			Figure 51	POGO Discharge Characteristic (250-Watt Discharge, 12-Amp-Hr Cell, 100 [°] F, New Cell) Nickel Cadmium Battery	10 30 40	Time-Minutes
1.50	1.40	1.30	1.20 F16	1.10 POGO Discha POGO DISC	1.00	T1.

					-			
							요 —	
								·
				Ce11)				
							30 —	
				ic "Memorized"				
				ic "Memo				
				Figure 52 POGO Discharge Characteristic rge, 12-Amp-Hr Cell, 100 ^O F, "M	ery			
				52 _ naract 11, 10	Batt			res —
				re ge Ch	lm1 um		& —	
				Figure scharge Amp-Hr C	l Cad			rime-
				Figure 52 OGO Discharge Characteris; e, 12-Amp-Hr Cell, 100 ^O F,	Nickel Cadmium Battery			
				POG(
				1 sche				
				att D			임 -	
				250-Watt Discharg				
				3				
		 						
		//						
							0	
1.50	1.40	1.30	1.20	01.1	1	00		
		e (Volts)						-

					04	
				.1s, POGO OOF (27% DOD) ith Cycle after	30	W
			F1.gure 53	20-Amp-Hr Nickel-Cadmium Cells, POGO Discharge Cycle (7.9A) at 1000F (27% DOD) Cycle No. 4502 (1/25/63), 26th Cycle after Revitalization Treatment	20	Time, Minutes
				20-Amp. Discha: Cycle 1 Revita:	10	
1.4	1.2	1.0	τοV Θ.	0.6	٠٠.٥	

	<u> </u>		T		1	Y	<u> </u>	r					
				·									
												3	
						ļ							
		·		/						- (g			
	 			 				<u> </u>		~ Z			
				/						LZ)			
										00년 11년 -			
		<u> </u>								t 10 atme		<u>۾</u>	
										Tre			
								-		4.5 10n –	1	 	<u> </u>
										POGO Discharge Cycle (7.9A) at 100°F (27% DOD) - Sycle after Revitalization Treatment			
										Cyc] tall		†	
									_	rge }ev1			
									75	cha) er I			
									re	Pis -	1	8-	-
									Figure	000 cle			
				,					- "	д С. С.			\vdash
										Cells, POGO I 604th Cycle (
										# (
										1/63 -			-
										1-Ce (3/7			
										1cke		A —	
										7 X			
										H-du			
										20-Amp-Hr Nickel-Cadmium Cycle No. 5080 (3/7/63),			
		H								-		 	<u> </u>
												0	
	_	→	((0:1	C	0		9.0-	-	• —	
		-1 		-		¬ ├	-) 	,	• 	<u> </u>) 	
		l				84	LoV]	Ì	1	1		i

3.4.4 Power Distribution

Power distribution equipment is usually classified as harnesses, circuit protection or fuses, terminal blocks, power switching, and under or over voltage protection and isolation diodes.

Power loss, weight and wire gauge for the harnesses used on five of the considered programs is summarized in Table X. Considerable standardization of component parts for harnesses has already been accomplished. Except for changing of the wire sizes to reduce losses, very little contribution can be made by the harness area to the maximum utilization of power. At present, these power losses are very minimal.

Circuit protection has been accomplished by the use of fuses in all known vehicles to date. These devices operate in a linear mode as a function of I²t. Other devices known as current limiters, which are non-linear with I²t have been used in special cases requiring only current limiting.

The use of relays for switching power or transferring functions has been the established procedure so far. Solid state switches have been proposed and used on two programs - Pioneer and 2029. All other programs investigated have used relays. These devices each have advantages and disadvantages as summarized below.

Advantages

Relays: Low power consumption; not susceptable to radiation damage; essentially unlimited current carrying capacity; well advanced in the state-of-the-art; and reasonably high reliability.

TABLE X
Harness Characteristics

Program	Voltage Drop			
	Primary* Power	Secondary Power	Weight lb.	Wire Gauge
OGO	~1.5%	< 1.5%	110	20-28 AWG
ABLE	< 50 MV	<u> </u>	\sim 15	20-28 AWG
VASP	<1200 MV	< 80 MV	15	20-28 AWG
PIONEER	< 250 MV	< 50 MV	9.87	20-28 AWG
VELA	750 MV	60 MV	12	20-28 AWG

^{*} Primary power losses are from primary sources to the users'equipment.

^{**} Secondary power losses are from secondary sources to the users'equipment.

Solid State Switch: Light weight; very compact; no magnetic properties; no moving parts; and predicted

high reliability.

Disadvantages

Relays: Poor magnetic field properties; high

volume; high weight; and subject to contact

chatter causing interruptions and/or noise.

Solid State Switches: Subject to radiation damage; limited current

carrying capacity; power consumption pro-

portional to current carried; and relatively

new in development.

For the purpose of this study, it would appear that characteristics other than power consumption may dictate the selection of switching device.

All other things being equal, solid state switches would be used for low power circuits, and relays for high power circuits in order to obtain maximum power system efficiency.

Under and over voltage protection has been accomplished by two methods in the spacecrafts surveyed. The Able V, Vela and OGO vehicles have used unijunction transistors. The Pioneer, Comsat and 2029 program are using the differential amplifier method. The later method is superior to using a unijunction, but has only recently been fully developed. Its advantages are: lower power consumption, narrower hysteresis band width, matrix logic outputs, better temperature range stability, and low DC voltage signals which can drive the power switching devices.

From a power efficiency point of view, the state-of-the-art in over/under voltage control is moving in the correct direction. At this time, no better choice is available.